Ordinary Differential Equations
MATH 266; Class 24841
Quiz 1; August 26, 2013
Show all work to receive full/partial credit

1. (5 points) Consider the population model

\[
\frac{dP}{dt} = 0.3 \left(1 - \frac{P}{20} \right) \left(\frac{P}{5} - 2 \right) P
\]

where \(P(t) \) is the population at time \(t \). \(A. \) For what values of \(P \) is the population in equilibrium? \(B. \) For what values of \(P \) is it increasing? \(C. \) For what values is it decreasing?

\[
\begin{array}{c|c|c|c|c|c}
\text{Interval} & 0 & \frac{P}{5} - 2 & P & \frac{dP}{dt} & \text{Behavior} \\
\hline
P < 0 & - & - & - & + & \text{increasing} \\
0 < P < 10 & - & - & + & - & \text{decreasing} \\
10 < P < 20 & + & + & - & - & \text{increasing} \\
P > 20 & + & - & - & - & \text{decreasing}
\end{array}
\]

2. (5 points) Solve the given initial value problem

\[
\frac{dy}{dt} = \frac{t}{y - t^2}, \quad y(0) = -3
\]

\[
\int y \, dy = \int \frac{t}{1-t^2} \, dt
\]

\[
u = 1-t^2, \quad du = -2t \, dt, \quad t \, dt = -\frac{du}{2}
\]

\[
y^2 = -\ln(1-t^2) + C
\]

\[
y(0) = 0 \Rightarrow \sqrt{C_1} = 0 \Rightarrow C_1 = 0
\]

\[
y(t) = -\sqrt{9 - \ln(1-t^2)}
\]