1. Show by using truth tables that the statements $p \rightarrow (q \lor \neg r)$ and $\neg p \lor (q \lor \neg r)$ are equivalent. (10 points)

2. Write the negation of the statement

 $$(\exists x) (p(x) \land q(x)) \rightarrow r(x)$$

 in a way in which ‘\neg’ is not a main connective
 (that is, ‘\neg’ does not apply to a compound statement). (10 points)
3. For this problem, the universal set is the set of positive integers, \(\mathbb{N} \).

Let \(B = \{ n : 1 \leq n \leq 60 \} \).

Let \(A_2 = \{ 2k : k \in \mathbb{N} \} \), let \(A_3 = \{ 3k : k \in \mathbb{N} \} \), and let \(A_5 = \{ 5k : k \in \mathbb{N} \} \). Recalling that \(\overline{C} \) is the complement of the set \(C \), find the set

\[B \cap \overline{A}_2 \cap \overline{A}_3 \cap \overline{A}_5 \]

4. Prove, using induction, that for all positive integers \(n \), that

\[1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \cdots + n(n + 1) = \frac{n(n + 1)(n + 2)}{3} \]
5. Define a sequence \(\{a_n\} \) by \(a_1 = 3 \) and for each positive integer \(n \), \(a_{n+1} = 2a_n + 1 \).

(a) Find the first five terms in the sequence: \(a_1, a_2, a_3, a_4, \) and \(a_5 \).

(b) Prove by induction that \(a_n > 2^n \) for every positive integer \(n \).
6.
(a) For which integers, \(n \), is the integer \(n^2 + 4n + 3 \) divisible by 2.

(b) For which integers, \(n \), is the integer \(n^2 + 4n + 3 \) divisible by 3.
7. Let \mathbb{N} be the set of positive integers and let $T = \{ m \in \mathbb{N} : m \text{ is not divisible by 3} \}$. We know the set T is countable because it is a subset of the integers.

(a) Find a one-to-one correspondence between \mathbb{N} and T by explicitly describing a function $f : \mathbb{N} \rightarrow T$. (Hint: One way to do this is by mapping the odd integers to the numbers that have remainder 1 when divided by 3 and mapping the even integers to numbers that have remainder 2 when divided by 3.)

(b) For the function f you defined in (a) above, what are $f(47)$ and $f(34)$?

(c) For the function f you defined in (a) above, for which n is $f(n) = 121$? for which n is $f(n) = 98$?