1. Suppose \(h \) is defined on the interval \(I \) and strictly increasing on that interval. Prove that \(h \) is one-to-one on \(I \).

In the following, we will invent a new function and develop some of its properties.

Define the function \(S \) by, for \(x \) a real number,
\[
S(x) = \int_{0}^{x} \frac{dt}{\sqrt{t^2 + 1}}
\]

Using the Riemann sums for this integral (with \(n = 100 \)), it follows that \(S(1) = .881 \) to three decimal places.

2. Explain why \(S \) is defined for every real number. This shows that the domain of \(S \) is \(\mathbb{R} \).

3. Find \(S'(x) \) and \(S''(x) \) and use your results to show that \(S \) is strictly increasing on \(\mathbb{R} \).

4. Find a relationship between \(S(x) \) and \(S(-x) \).

5. Show that \(\sqrt{t^2 + 1} < t + 1 \) for \(t > 0 \) and use the inequality to show that \(S(x) > \ln(x + 1) \) for \(x > 0 \).

6. Find \(\lim_{x \to \infty} S(x) \) and \(\lim_{x \to -\infty} S(x) \). What is the range of \(S \), that is, what is the set \(\{ y : y = S(x) \text{ for some } x \in \mathbb{R} \} \)?

7. Use the results of the previous exercises to draw a graph of \(S \).

8. Use an argument similar to that of Exercise 5 above to see that there is a constant \(C \) so that \(S(x) < C + \ln(x - 1) \) for \(x \geq 2 \).

Challenge Problem:
(This problem will never be assigned or collected. There are solutions that are easy to understand, but there are no solutions that are easy to find!)

Find a function \(f \) that maps \([0, 1]\) one-to-one and onto \((0, 1)\).