Problems

59. A necessary and sufficient condition for an operator to be an isometry is that its spectral radius be less than or equal to 1.

60. Let H be a Hilbert space and A be a continuous linear operator on H. Then A is bounded if and only if its spectrum is contained in the closed unit disk.

61. Every bounded linear operator on a Hilbert space is the limit of a sequence of finite-rank operators.

62. If A is a bounded linear operator on a Hilbert space and x is a vector in the Hilbert space, then $\|Ax\| \leq \|A\|\|x\|$.

63. Let A be a bounded linear operator on a Hilbert space. Then A is compact if and only if its spectrum is contained in the closed unit disk.

64. Let A be a bounded linear operator on a Hilbert space. Then A is normal if and only if its spectrum is symmetric.

65. Let A be a bounded linear operator on a Hilbert space. Then A is self-adjoint if and only if its spectrum is real.

66. Let A be a bounded linear operator on a Hilbert space. Then A is unitary if and only if its spectrum is contained in the unit circle.

67. Let A be a bounded linear operator on a Hilbert space. Then A is invertible if and only if its spectrum is contained in the open unit disk.

68. Let A be a bounded linear operator on a Hilbert space. Then A is positive if and only if its spectrum is contained in the non-negative real numbers.

69. Let A be a bounded linear operator on a Hilbert space. Then A is compact if and only if its spectrum is a countable union of closed intervals.

70. Let A be a bounded linear operator on a Hilbert space. Then A is trace-class if and only if its spectrum is absolutely summable.

71. Let A be a bounded linear operator on a Hilbert space. Then A is nuclear if and only if its spectrum is a compact discrete set.

72. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm if and only if its spectrum is compact and its essential spectrum is empty.

73. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index zero if and only if its spectrum is contained in the unit disk and the unit circle.

74. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index one if and only if its spectrum is contained in the unit circle and the open unit disk.

75. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

76. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

77. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

78. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

79. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

80. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

81. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

82. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

83. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

84. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

85. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

86. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

87. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

88. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

89. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.

90. Let A be a bounded linear operator on a Hilbert space. Then A is Fredholm of index n if and only if its spectrum is contained in the unit circle and the open unit disk, and A has n eigenvalues on the unit circle.
Suppose that the set \(\mathbb{N} \) of natural numbers is the field of real numbers, and let \(\mathbb{Q} \) be any other field. Then, for any \(\alpha \in \mathbb{Q} \), the expression \(\alpha x \) is defined for all \(x \in \mathbb{R} \).

Then, if \(\alpha \) is a real number, we have:

\[
\alpha x = x_1 + \alpha x_2
\]

and for \(\alpha = 0 \), we have:

\[
\alpha x = 0
\]

This implies that \(\alpha x \) is defined for all \(x \in \mathbb{R} \).

Also, the expression \(x^\alpha \) is defined for all \(x \in \mathbb{R} \) and all \(\alpha \in \mathbb{Q} \).

Finally, the expression \(\sqrt[\alpha]{x} \) is defined for all \(x \in \mathbb{R} \) and all \(\alpha \in \mathbb{Q} \), provided \(x \geq 0 \) when \(\alpha \) is even.

Solution 69. The problem of finding the solutions of the equation \(x^2 + 1 = 0 \) in \(\mathbb{C} \) is not straightforward. In order to solve this problem, we first need to find the roots of the equation:

\[
x^2 + 1 = 0
\]

This equation has no real solutions, but it does have complex solutions. In fact, the solutions are:

\[
x = \pm i
\]

where \(i \) is the imaginary unit, defined by \(i^2 = -1 \).

Solution 70. The problem of finding the solutions of the equation \(x^2 + 1 = 0 \) in \(\mathbb{C} \) is not straightforward. In order to solve this problem, we first need to find the roots of the equation:

\[
x^2 + 1 = 0
\]

This equation has no real solutions, but it does have complex solutions. In fact, the solutions are:

\[
x = \pm i
\]

where \(i \) is the imaginary unit, defined by \(i^2 = -1 \).

Solution 69. The problem of finding the solutions of the equation \(x^2 + 1 = 0 \) in \(\mathbb{C} \) is not straightforward. In order to solve this problem, we first need to find the roots of the equation:

\[
x^2 + 1 = 0
\]

This equation has no real solutions, but it does have complex solutions. In fact, the solutions are:

\[
x = \pm i
\]

where \(i \) is the imaginary unit, defined by \(i^2 = -1 \).

Solution 70. The problem of finding the solutions of the equation \(x^2 + 1 = 0 \) in \(\mathbb{C} \) is not straightforward. In order to solve this problem, we first need to find the roots of the equation:

\[
x^2 + 1 = 0
\]

This equation has no real solutions, but it does have complex solutions. In fact, the solutions are:

\[
x = \pm i
\]

where \(i \) is the imaginary unit, defined by \(i^2 = -1 \).