6.5 Seasonal ARIMA models

A process \(\{X_t\} \) is called seasonal \(ARIMA(p,d,q) \times (P,D,Q) \), process with periods \(s \) if \(Y_t = (1 - B)^d(1 - B^s)^DX_t \) is a causal \(ARMA(p + sP, q + sQ) \) process as

\[
\phi(B)\Phi(B^s)Y_t = \theta(B)\Theta(B^s)Z_t
\]

with \(Z_t \sim WN(0, \sigma^2) \). Alternatively, one can write

\[
\phi^*(B)Y_t = \theta^*(B)Z_t
\]

in which the polynomial \(\phi^*(z) \) is of degree \(p + sP \) and the polynomial \(\theta^*(z) \) is of degree \(q + sQ \).

Remark 1. The process \(\{Y_t\} \) is causal if and only if \(\phi(z) \neq 0 \) and \(\Phi(z) \neq 0 \) for \(|z| \leq 1 \). In applications, \(D \) is rarely more than one, and \(P \) and \(Q \) are typically less than three.

Remark 2. Provided that \(p < s \) and \(q < s \), the constrains on the coefficients of \(\phi^*(.) \) and \(\theta^*(.) \) can all be expressed as multiplicative relations

\[
\phi^*_{is+j} = \phi^*_{is}\phi^*_{j}, \quad i = 1, 2, \ldots; \quad j = 1, \ldots, s - 1,
\]

and

\[
\theta^*_{is+j} = \theta^*_{is}\theta^*_{j}, \quad i = 1, 2, \ldots; \quad j = 1, \ldots, s - 1,
\]

Remark 3. The disadvantage of the classical decomposition model \(X_t = m_t + s_t + Y_t \) is that it assume that the seasonal component \(s_t \) repeats itself precisely the same way cycle after cycle. Seasonal ARIMA models allow for randomness in the seasonal pattern from one cycle to the next.

Example 6.5.1-6.5.3 The between year model with \(p = q = 0 \).
The identification and/or estimation of seasonal $ARIMA(p, d, q) \times (P, D, Q)_s$ model:

1. Find the right differencing to achieve stationarity (i.e., s, D and d)
2. Examine the ACF $\hat{\rho}_{ks}$, $k = 1, 2, \ldots$ of Y_t to choose P and Q.
3. Examine the ACF $\hat{\rho}_k$, $k = 1, 2, \ldots, s$ to choose p and q.
4. An alternative to the last two steps is to apply MLE and AICC criterion for ARMA
 model of the special form (i.e., the AR and MA polynomials are of the forms
 $\phi(B)\Phi(B^s)$ and $\theta(B)\Theta(B^s)$).

Example 6.5.4 Monthly accidental deaths
6.5.1 Forecasting SARIMA Processes

By a similar argument for ARIMA process, the h-step prediction is obtained by the following recursive formula:

\[P_n X_{n+h} = P_n Y_{n+h} - \sum_{j=1}^{d+D} a_j P_n X_{n+h-j} \]

and the mean squared error of the h-step prediction is

\[\sigma_n^2(h) = E(X_{n+h} - P_n X_{n+h})^2 = \sum_{j=0}^{h-1} \left(\sum_{r=0}^{j} \chi_r \theta_{n+h-r-1,j-r} \right)^2 v_{n+h-j-1}, \]

with

\[\chi(z) = \sum_{r=0}^{\infty} \chi_r z^r = (\phi(z) \Phi(z^s)(1-z^d(1-z^s)^D))^{-1}, \]

and

\[v_{n+h-j-i} = E \left(X_{n+h-j} - \hat{X}_{n+h-j} \right)^2 = E \left(Y_{n+h-j} - \hat{Y}_{n+h-j} \right)^2. \]

Note: When \(\theta(\cdot)\Theta(\cdot) \) is invertible, \(\sigma_n^2(h) \) can be approximated by

\[\sigma_n^2(h) = \sum_{j=0}^{h-1} \psi_j^2 \sigma^2, \quad \psi(z) = \sum_{j=0}^{\infty} \psi_j z^j = \frac{\vartheta(z) \Theta(z^s)}{\phi(z) \Phi(z^s)(1-z^d(1-z^s)^D)}, \quad |z| < 1. \]

Example 6.5.5 Monthly accidental deaths