Vertically Shifting the Graph Upward:

\[y = f(x) + c \]
Shift graph upward \(c \) units. \((c > 0)\)

Example: \(f(x) = x^2 + 1 \)
and \(f(x) = x^2 + 5 \)

Vertically Shifting the Graph Downward:

\[y = f(x) - c \]
Shift graph downward \(c \) units. \((c > 0)\)

Example: \(f(x) = x^2 - 1 \)
and \(f(x) = x^2 - 5 \)

Horizontally Shifting the Graph to the Right:

\[y = f(x - c) \]
Shift graph to the right \(c \) units. \((c > 0)\)

Example: \(f(x) = (x - 1)^2 \)
and \(f(x) = (x - 5)^2 \)

Horizontally Shifting the Graph to the Left:

\[y = f(x + c) \]
Shift graph to the left \(c \) units. \((c > 0)\)

Example: \(f(x) = (x + 1)^2 \)
and \(f(x) = (x + 5)^2 \)
The following is to help you understand part 5 of the homework:

- **a)** \(f(x + 3) \)
 - Left 3 units

- **b)** \(f(x) + 3 \)
 - Up 3 units

- **c)** \(f(x + 3) + 1 \)
 - Left 3 units, up 1 unit

The following is to help you understand part 6 of the homework:

Vertically Stretching:

\[y = c \cdot f(x) \]

\((c > 1) \)

Example: Using \(y = x^2 \) and \(x = 2 \) then: \(y = 4 \).

If \(y = c \cdot f(x) \) where \(c = 2 \), then:

\[y = 2x^2 = 2(2)^2 = 8 \]

\(f(x) \) is stretched from \(y = 4 \) to \(y = 8 \)

Vertically Stretched by a factor of 2

Vertically Compressing:

\[y = c \cdot f(x) \]

\((0 < c < 1) \)

Example: Using \(y = x^2 \) and \(x = 2 \) then: \(y = 4 \).

If \(y = c \cdot f(x) \) where \(c = 0.5 \), then:

\[y = 0.5x^2 = 0.5(2)^2 = 2 \]

\(f(x) \) is compressed from \(y = 4 \) to \(y = 2 \)

Vertically Compressed by a factor of \(1/0.5 = 2 \)