Math 153: Lecture Notes For Chapter 3 (Part b)

Section 3.4: Definition of Function

Function: is a rule that assigns to each element \(x \) (input) in a set \(D \) exactly one element, called \(f(x) \) (output) in a set \(E \).

Graph A: A function, vertical line crosses only once. Different input, Different output.

Graph B: A function, vertical line crosses only once. Different input, Same output (the profit in two different years were the same).

Graph C: Not a function, vertical line crosses more than once. Same input, Different output (two different profits for the same year).

Vertical Line Test: If any vertical line meets the graph of an equation only once, then the equation is a function.

Examples:

1) If \(y = x^2 \) Find the value of \(y \) if \(x = -1, x = 1 \), is this equation a function?

2) If \(x = y^2 \) Find the value of \(x \) if \(y = -1, y = 1 \), is this equation a function?

3) If \(f(x) = -x^2 + 2x + 2 \), find:
 a) \(f(0) \)
 b) \(f(-1) \)
 c) \(f(a+b) \)
 d) \(f(a) + f(b) \)

4) If \(f(x) = 2x^2 + 3x - 1 \), find:
 a) \(f(a) \)
 b) \(f(-a) \)
 c) \(f(a+h) \)
 d) \(\frac{f(a+h) - f(a)}{h} \)
Domain: The set of all possible inputs that would not cause:

a) a zero in the denominator
b) negative under an even root

Examples: Find the domain of the following:

5) \(f(x) = \frac{x+5}{x-4} \)
6) \(f(x) = \sqrt{5-x} \)
7) \(f(x) = \frac{x+5}{\sqrt{5-x}} \)
8) \(f(x) = \frac{5}{(x-2)\sqrt{x+2}} \)

9) Find the function \(f(x) \) if it is linear and: \(f(-1) = 2, f(2) = 3 \).

For the following examples,

a) Sketch the function

 a) Find the range and the domain.

 c) The intervals in which the function is increasing, decreasing or constant.

10) \(f(x) = x^2 - 1 \)
11) for \(f(x) = \sqrt{4-x^2} \)
12) for \(f(x) = \sqrt{4+x} \)
13) for \(f(x) = -3x + 2 \)
Section 3.5: Graphs of Functions

Even Function:
\[f(x) = f(-x) \]
Symmetric with respect to \(y \) axis

- Example:
 \[f(x) = x^2 + 2 \]
 \[f(-x) = (-x)^2 + 2 = x^2 + 2 = f(x) \]

Odd Functions:
\[f(-x) = -f(x) \]
Symmetric with respect to origin

- Example:
 \[f(x) = 3x^3 + 2x \]
 \[f(-x) = 3(-x)^3 + 2(-x) = -3x^3 - 2x = -f(x) \]

Reflecting Graphs in the \(x \)-axis:
\[y = f(x) \text{ and } y = -f(x) \]
Reflect in the \(x \)-axis

- Example: \(y = x^2 \text{ and } y = -x^2 \)

Reflecting Graphs in the \(y \)-axis:
\[y = f(x) \text{ and } y = f(-x) \]
Reflect in the \(y \)-axis

- Example: \(y = \sqrt{x} \text{ and } y = \sqrt{-x} \)
Vertically Shifting the Graph Upward:

\[y = f(x) + c \]

Shift graph upward \(c \) units. \((c > 0)\)

Example: \(f(x) = x^2 + 1 \)

and \(f(x) = x^2 + 5 \)

Vertically Shifting the Graph Downward:

\[y = f(x) - c \]

Shift graph downward \(c \) units. \((c > 0)\)

Example: \(f(x) = x^2 - 1 \)

and \(f(x) = x^2 - 5 \)

Horizontally Shifting the Graph to the Right:

\[y = f(x - c) \]

Shift graph to the right \(c \) units. \((c > 0)\)

Example: \(f(x) = (x - 1)^2 \)

and \(f(x) = (x - 5)^2 \)

Horizontally Shifting the Graph to the Left:

\[y = f(x + c) \]

Shift graph to the left \(c \) units. \((c > 0)\)

Example: \(f(x) = (x + 1)^2 \)

and \(f(x) = (x + 5)^2 \)
Vertically Stretching:
\[y = c \cdot f(x) \]
\((c > 1)\)
Example: \(y = x^2 \) and \(y = 2x^2 \)
If \(x = -2 \), Then \(y = 4 \) is stretched to \(y = 8 \)
Vertically Stretched by a factor of 2

Vertically Compressing:
\[y = c \cdot f(x) \]
\((0 < c < 1)\)
Example: \(y = x^2 \) and \(y = \frac{1}{2}x^2 = 0.5x^2 \)
If \(x = -2 \), Then \(y = 4 \) is compressed to \(y = 2 \)
Vertically Compressed by a factor of \(\frac{1}{0.5} = 2 \)

Horizontally Compressing:
\[y = f(cx) \]
\((c > 1)\)
Example: \(y = x^2 + 3x + 4 \) and \(c = 2 \), then
\[y = f(2x) = (2x)^2 + 3(2x) + 4 \]
Horizontally Compressed by a factor of 2

Horizontally Stretching:
\[y = f(cx) \]
\((0 < c < 1)\)
Example: \(y = x^2 + 3x + 4 \) and \(c = 0.5 \), then
\[y = f(0.5x) = (0.5x)^2 + 3(0.5x) + 4 \]
Horizontally Stretched by a factor of \(\frac{1}{0.5} = 2 \)
Graphs with Absolute Value:

Example: \(y = |x - 1| \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

The break is where \(y = 0 \) or \(x = 1 \)

Graphs of Piecewise-Defined function

\[
f(x) = \begin{cases}
-x & \text{for } x < -1 \\
2x^2 & \text{for } -1 \leq x < 1 \\
-1 & \text{for } x \geq 1
\end{cases}
\]

The graph of this function is divided into three parts:

<table>
<thead>
<tr>
<th>(x < -1)</th>
<th>(-1 \leq x < 1)</th>
<th>(x \geq 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = -x)</td>
<td>(f(x) = 2x^2)</td>
<td>(f(x) = -1)</td>
</tr>
<tr>
<td>(x = 0) Out</td>
<td>(x = 0) (f = 0)</td>
<td>(x = 1) (f = -1)</td>
</tr>
<tr>
<td>(x = -2) (f = 2)</td>
<td>(x = -1) (f = 2)</td>
<td>(x = 3) (f = -1)</td>
</tr>
<tr>
<td>(x = -4) (f = 4)</td>
<td>(x = 1) (f = 2)</td>
<td>(\text{Horizontal line})</td>
</tr>
</tbody>
</table>

The graphing will be done in class.

Graphs with Greatest Integer: \(\|x\| = n \)

The left side is always greater or equal to the right side. An easier way to look at it:

If are driving (in positive direction), your location is always equal to the last mile (in integer value) that you passed.

Examples:

\[[1.2] = 1, \quad [2.3] = 2 \]
\[[-0.5] = -1, \quad [0.8] = 0 \]
\[[3.6] = 3 \quad [-2.8] = -3 \quad [4.1] = 4 \]
Determine whether the functions are even, odd or neither:

1) \(f(x) = x^5 + x \)
2) \(f(x) = 1 - x^4 \)
3) \(f(x) = |x| - 5 \)
4) \(f(x) = \sqrt{x^4 + 2} \)
5) \(f(x) = \frac{2}{x} + x^3 \)

Sketch, on the same coordinate plane, the graphs of \(f \) for the given values \(c \).

6) \(f(x) = 2x^2 - c \); \(c = -4, 2, 4 \)
7) \(f(x) = (x + c)^3 \); \(c = -1, 2, 3 \)
8) \(f(x) = cx^3 \); \(c = -0.5, 2, 3 \)

Using the following graph of a function \(f \). Sketch the graph of the given functions

9) \(y = f(x) + 2 \)
10) \(y = f(x - 1) \)
11) \(y = f(x - 1) + 2 \)
12) \(y = 2f(x) \) and \(y = -2f(x) \)
13) \(y = f(3x) \)

\[y \]
\[x \]

Book, Exer. 25 - 30: If the point \(P \) is on the graph of a function \(f \), find the corresponding point on the graph of the given function:

26) \(P(3, -1) \); \(y = 2f(x) + 4 \)
28) \(P(-2, 4) \); \(y = 1/2f(x - 3) + 3 \)
30) \(P(-2, 1) \); \(y = -3f(2x) - 1 \)

Book, Exer. 31 - 38: Explain how the graph of the function compares to the graph of \(y = f(x) \):

32) \(y = 3f(x - 1) \)
34) \(y = -f(x + 4) \)
36) \(y = f(1/2x) - 3 \)

Sketch the graph of:

14) \(f(x) = \begin{cases}
 x + 4 & \text{for } x \leq -2 \\
 x^2 - 1 & \text{for } |x| < 2 \\
 2 & \text{for } x \geq 2
\end{cases} \)
15) \(f(x) = \|x + 2\| \)