Math 153: Lecture Notes For Chapter 4

Section 4.1: Polynomial Functions of Degree Greater Than 2

It is very helpful to review Section 3.5 materials (shifting, reflecting, stretching, compressing).

Even Function:
\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + c \]
- If \(n \) is even, the graph is symmetric with respect to the \(y \)-axis.
- \(a > 0 \), the graph rises to the left and to the right.
- \(a < 0 \), reflect the graph through the \(x \)-axis. The graph falls to the left and to the right.
- \(c > 0 \), shift upward
- \(c < 0 \), shift downward
- \(a > 1 \), Vertically Stretched
- \(a < 1 \), Vertically Compressed
- \(f(x) = f(-x) \) (see section 3.5 handout)

Odd Functions:
\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + c \]
- If \(n \) is odd, the graph is symmetric with respect to the origin.
- \(a > 0 \), the graph falls to the left and rises to the right.
- \(a < 0 \), reflect the graph through the \(x \)-axis. The graph rises to the left and falls to the right.
- \(c > 0 \), shift upward
- \(c < 0 \), shift downward
- \(a > 1 \), Vertically Stretched
- \(a < 1 \), Vertically Compressed
- \(f(-x) = -f(x) \) (see section 3.5 handout)
Intermediate Value Theorem for Polynomials:

If \(f \) is a polynomial function and if \(f(a) \) and \(f(b) \) have opposite signs, then there is at least one value \(c \) between \(a \) and \(b \) for which \(f(c) = 0 \).

Example:
The following function has a zero between \(x = 1 \) and \(x = 2 \), and also between \(x = 3 \) and \(x = 4 \) because of the change in the function sign.

Example 1: Use the intermediate value theorem to show that \(f \) has a zero between \(a \) and \(b \).

\[
f(x) = x^3 + 2x^2 + 3x - 10 \quad ; \quad a = 1, \ b = 2
\]

Solution:

\[
f(1) = (1)^3 + 2(1)^2 + 3(1) - 10 = -4 \quad ; \quad f(2) = (2)^3 + 2(2)^2 + 3(2) - 10 = 12
\]

Since \(f(1) \) and \(f(2) \) have opposite sign, then there is at least one number \(c \) between \(a \) and \(b \) where \(f(c) = 0 \).

Note: for the following examples, it is helpful to review section 2.7 handout.

Example 2: Find all values of \(x \) such that \(f(x) > 0 \) and all \(x \) such that \(f(x) < 0 \), and then sketch the graph of \(f \).

\[
f(x) = x^3 - 3x^2 - 9x + 27
\]

Solution:

- \(f(x) = x^2(x - 3) - 9(x - 3) = (x^2 - 9)(x - 3) = (x + 3)(x - 3)(x - 3) \)
 or \(f(x) = (x + 3)(x - 3)^2 \)
- Find the intervals or regions when \(x = -3 \) and \(x = 3 \):

<table>
<thead>
<tr>
<th>Interval</th>
<th>((-\infty, -3))</th>
<th>((-3, 3))</th>
<th>((3, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((x + 3))</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>((x - 3)^2)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Position of graph</td>
<td>Below x-axis</td>
<td>Above x-axis</td>
<td>Above x-axis</td>
</tr>
</tbody>
</table>

- Below the x-axis if \(x < -3 \), above the x-axis if \(-3 < x < 3 \) or \(x > 3 \)

Note: \(-3 < x < 3 \) can be written as \(|x| < 3 \)
Example 3:
\[f(x) = 4x - x^3 \]
- \[f(x) = x(4 - x^2) = x(2 - x)(2 + x) \]
- Find the intervals or regions when \(x = -2, x = 0 \) and \(x = 2 \):

<table>
<thead>
<tr>
<th>Interval</th>
<th>((-\infty, -2))</th>
<th>((-2, 0))</th>
<th>((0, 2))</th>
<th>((2, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(2 - x)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>(2 + x)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Position of graph</td>
<td>+ or Above</td>
<td>- or Below</td>
<td>+ or Above</td>
<td>- or Below</td>
</tr>
</tbody>
</table>

Above the \(x \)-axis if \(x < -2 \) or \(-2 < x < 2\), below the \(x \)-axis if \(-2 < x < 0 \) or \(x > 2 \)

Example 4:
\[f(x) = x^4 + 3x^3 - 4x^2 \]
- \[f(x) = x^2(x^2 + 3x - 4) = x^2(x + 4)(x - 1) \]
- Find the intervals or regions when \(x = -4, x = 0 \) and \(x = 1 \):

<table>
<thead>
<tr>
<th>Interval</th>
<th>((-\infty, -4))</th>
<th>((-4, 0))</th>
<th>((0, 1))</th>
<th>((1, \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^2)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(x + 4)</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(x - 1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Position of graph</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

- \(f(x) > 0 \) (above) when \(x < -4 \) or \(x > 1 \), \(f(x) < 0 \) (below) when \(-4 < x < 0 \) or \(0 < x < 1 \)

The following examples are from the book:

34.: If \(f(x) = kx^3 + x^2 - kx + 2 \), find a number \(k \) such that the graph of \(f \) contains the point \((2, 12)\)

36.: If one zero of \(f(x) = x^3 - 3x^2 - kx + 12 \) is -2, find two other zeros
Section 4.2: Properties of Division

To divide 11 by 4:

\[
\begin{array}{c|ccc}
& 2 & \text{Quotient} \\
\hline
4 & 11 & \text{Divisor} \\
\hline
-8 & & \\
3 & \text{Dividend} \\
\end{array}
\]

The answer is = 2 + 3/4

Check: 11 = (4)(2) + 3

Division Algorithm: \(f(x) = p(x)q(x) + r(x) \)

Long Division:

Example 1: Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \):

\[f(x) = 4x^4 + 6x^3 - 3x - 2 \quad ; \quad p(x) = 2x^2 - 1 \]

Example 2: a) Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \)

b) Find \(f(1) \)

\[f(x) = x^3 - 2x^2 + 3x + 1 \quad ; \quad p(x) = x - 1 \]

Example 3: a) Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \)

b) Find \(f(-2) \)

\[f(x) = x^3 - 7x - 6 \quad ; \quad p(x) = x + 2 \]

- **Remainder Theorem:** If \(f(x) \) is divided by \((x - c) \), then the remainder is \(f(c) \)
- **Factor Theorem:** If \(f(c) = 0 \), then \((x - c) \) is a factor of \(f(x) \).

To understand the theorem, use the solution of example 3: \(p(x) = x + 2 \) or \(p(x) = x - c \) where \(c = -2 \)

- **Remainder Theorem:**
 Dividing \(f(x) \) by \(p(x) \) where \(c = -2 \) has a remainder = 0, then \(f(-2) = 0 \)
- **Factor Theorem:**
 Since \(f(-2) = 0 \), then \((x + 2) \) is a factor of \(f(x) \)
Example 4: Use the remainder theorem to find \(f(c) \) when:
\[
f(x) = 2x^3 - 7x^2 + 5, \quad c = 3
\]
Solution: Divide \(f(x) = 2x^3 - 7x^2 + 5 \) by \((x - 3)\), and you will find the remainder = -4, then \(f(3) = -4 \)

Example 5: Use the factor to show that \((x - c)\) is a factor of \(f(c) \) when:
\[
f(x) = x^3 - 7x + 6, \quad c = -3
\]
Solution: Divide \(f(x) = x^3 - 7x + 6 \) by \((x + 3)\), and the remainder must be = 0

Example 6: Find a polynomial \(f(x) \) with leading coefficient =1 and having the given degree and zeros:

<table>
<thead>
<tr>
<th>Degree</th>
<th>Zeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>-1, 1, 2</td>
</tr>
<tr>
<td>4</td>
<td>-2, 2, 0, 5</td>
</tr>
</tbody>
</table>

Answers: a) \((x - 1)(x + 1)(x - 2)\) b) \(x(x - 2)(x + 2)(x - 5)\)

Synthetic Division, Division by \((x - c)\):

Example 7: Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \) (same as example 2)
\[
f(x) = x^3 - 2x^2 + 3x + 1; \quad p(x) = x - 1
\]

Example 8: Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \) (same as example 1)
\[
f(x) = 4x^4 + 6x^3 + 3x - 1; \quad p(x) = 2x^2 - 1
\]
Not possible, Synthetic Division can only be used when dividing by \((x - c)\).

Example 9: Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \) (same as example 3)
\[
f(x) = x^3 - 7x - 6; \quad p(x) = x + 2
\]

Example 10: Find the quotient and remainder if \(f(x) \) is divided by \(p(x) \) (same as example 3)
\[
f(x) = 2x^3 + 3x^2 - 2x + 1; \quad p(x) = x - \frac{1}{2}
\]

Example 11: Use the synthetic division to find \(f(c) \) when:
\[
f(x) = 3x^5 + 5x^4 - 4x^3 + 7x + 3; \quad c = -2
\]

Example 12: Use the synthetic division to show that \(c \) is a zero of \(f(x) \) when:
\[
f(x) = 2x^3 + 7x^2 + 6x - 5; \quad c = \frac{1}{2}
\]

Example 13: Find all values of \(k \) such that \(f(x) \) is divisible by the given function:
\[
f(x) = k^2x^3 - 4kx + 3; \quad (x - 1)
\]

Example 14: Use the synthetic division to decide whether \((x + 3)\) is a factor, and if it is, find all other factors:
\[
f(x) = x^3 + 5x^2 - 2x - 24
\]

Example 15: Use the synthetic division to decide whether \((x - 2)\) is a factor, and if it is, find all other factors:
\[
f(x) = x^3 - 7x + 6
\]