Problem 1. Solve the equation \(\ln(x + 1) = \ln(4/x) + \ln(3) \).

Solution. We combine the logarithms on the RHS first:

\[
\ln(x + 1) = \ln\left(\frac{4}{x} \cdot 3\right)
\]

\[
\ln(x + 1) = \ln\left(\frac{12}{x}\right);
\]

Applying \(e^x \) to both sides we get \(x + 1 = 12/x \) or \(x^2 + x - 12 = 0 \). Therefore \(x = -4 \) or \(x = 3 \).

The check shows that \(x = -4 \) is not a solution (e.g. \(\ln(x + 1) \) does not exists) and \(x = 3 \) is. Answer: one solution, \(x = 3 \). \(\square \)

Problem 2. The mass \(m(t) \) remaining after \(t \) years from a sample of some radioactive substance is given by \(m(t) = m_0 e^{-0.012t} \), where \(m_0 \) is the initial mass. Find the half life of this substance.

Solution We want to find \(t \) such that

\[
m_0/2 = m_0 e^{-0.012t}.
\]

Divide by \(m_0 \) and apply \(\ln \):

\[
1/2 = e^{-0.012t},
\]

\[
\ln(1/2) = -0.0124t,
\]

\[
t = \ln(1/2) / -0.0124 \approx 55.90 \text{years}.
\]