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Abstract. Little is known about the global topology of the Fatou set U(f) for holo-
morphic endomorphisms f : CPk → CPk, when k > 1. Classical theory describes U(f)

as the complement in CPk of the support of a dynamically-defined closed positive (1, 1)
current. Given any closed positive (1, 1) current S on CPk, we give a definition of linking
number between closed loops in CPk \ suppS and the current S. It has the property that

if lk(γ, S) 6= 0, then γ represents a non-trivial homology element in H1(CPk \ suppS).
As an application, we use these linking numbers to establish that many classes of en-

domorphisms of CP2 have Fatou components with infinitely generated first homology. For
example, we prove that the Fatou set has infinitely generated first homology for any poly-
nomial endomorphism of CP2 for which the restriction to the line at infinity is hyperbolic
and has disconnected Julia set. In addition we show that a polynomial skew product of
CP2 has Fatou set with infinitely generated first homology if some vertical Julia set is
disconnected. We then conclude with a section of concrete examples and questions for
further study.

1. Introduction

Our primary interest in this paper is the topology of the Fatou set for holomorphic
endomorphisms of CPk (written as Pk in the remainder of the paper). We develop a type of
linking number that in many cases allows one to conclude that a given loop in the Fatou set
is homologically non-trivial. One motivation is to find a generalization of the fundamental
dichotomy for polynomial (or rational) maps of the Riemann sphere: the Julia set is either
connected, or has infinitely many connected components. Further, this type of result paves
the way to an exploration of a potentially rich algebraic structure to the dynamics on the
Fatou set.

Given a holomorphic endomorphism f : Pk → Pk, the Fatou set U(f) is the maximal open
set on which the iterates {fn} form a normal family. The Julia set J(f) is the complement,
J(f) = Pk \ U(f). The standard theory [14, 21, 36] gives a convenient description of these
sets in terms the Green’s current T . Specifically, T is a dynamically defined closed positive
(1, 1) current with the property that J(f) = supp(T ). We provide relevant background
about the Green’s current in Section 2. Throughout this paper we assume the degree of f
is at least two (i.e. that the components of a lift of f to Ck+1, with no common factors,
have degree at least two).
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Motivated by this description of the Fatou set, in Section 3 we define a linking number
lk(γ, S) between a closed loop γ ⊂ Pk \ supp S and a closed positive (1, 1) current S. In
Proposition 3.2 we will show that it depends only on the homology class of γ, and that it
defines a homomorphism

lk(·, S) : H1(P
k \ supp S) → R/Z.

In particular, a non-trivial linking number in R/Z proves that the homology class of γ is
non-trivial. The techniques are based on a somewhat similar theory in [32].

This linking number can also be restricted to loops within any open Ω ⊂ Pk \ suppS,
giving a homomorphism lk(·, S) : H1(Ω) → R/Z. If Ω is the basin of attraction for an
attracting periodic point of a holomorphic endomorphism f : Pk → Pk and S is the Green’s
current, we will show in Proposition 3.8 that the image of this homomorphism is contained
in Q/Z. This provides a natural setting to show that, under certain hypotheses, the Fatou
set U(f) has infinitely generated first homology:

Theorem 1.1. Suppose that f : Pk → Pk is a holomorphic endomorphism and Ω ⊂ U(f)
is a union of basins of attraction of attracting periodic points for f . If there are c ∈ H1(Ω)
with linking number lk(c, T ) 6= 0 arbitrarily close to 0 in Q/Z, then H1(Ω) is infinitely
generated.

(We prove Theorem 1.1 in Section 3.) Note that the hypotheses of Theorem 1.1 are satisfied
if there are piecewise smooth loops γ ⊂ Ω with lk(γ, T ) 6= 0 arbitrarily close to 0 in Q/Z.
In our applications, we often find a loop γ0 with nontrivial linking number, and then take
an appropriate sequence of iterated preimages γn under fn so that lk(γn, T ) → 0 in Q/Z.

In order to apply this theory to specific examples, one needs a detailed knowledge of
the geometry of the Green’s Current T . In the second half of the paper we consider two
situations in which it can be readily applied to provide examples of endomorphism f of P2

having Fatou set U(f) with infinitely generated homology.
The first situation is for polynomial endomorphisms of P2, that is, holomorphic maps of

P2 that are obtained as the extension a polynomial map f(z,w) = (p(z,w), q(z,w)) on C2.
Such mappings (and their generalizations to Pk) were studied in [3]. Given a polynomial
endomorphism f : P2 → P2, the line at infinity, denoted by Π, is totally invariant and
superattracting. Therefore the restriction of T to Π can be understood using the dynamics
of the resulting rational map of f|Π and its Julia set JΠ. In Section 4 we prove the following
theorem.

Theorem 1.2. Suppose that f is a polynomial endomorphism of P2 with restriction f|Π to
the line at infinity Π. If f|Π is hyperbolic and JΠ is disconnected, then the Fatou set U(f)
has infinitely generated first homology.

This theorem provides for many examples of polynomial endomorphisms f of P2 with in-
teresting homology of U(f). We present one concrete family in Example 4.6.

We then consider the special family of polynomial endomorphisms known as polynomial
skew products. While Theorem 1.2 applies to certain polynomial skew products, we develop
additional sufficient criteria for U(f) to have interesting homology.

A polynomial skew product is a polynomial endomorphism having the form f(z,w) =
(p(z), q(z,w)), where p and q are polynomials. We assume that deg(p) = deg(q) = d
and p(z) = zd + O(zd−1) and q(z) = wd + Oz(w

d−1), where we have normalized leading
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coefficients. Since f preserves the family of vertical lines {z} × C, one can analyze f via
the collection of one variable fiber maps qz(w) = q(z,w), for each z ∈ C. In particular, one
can define fiber-wise filled Julia sets Kz and Julia sets Jz := ∂Kz with the property that
w ∈ C \ Kz if and only if the orbit of (z,w) escapes vertically to a superattracting fixed
point [0 : 1 : 0] at infinity.

For this reason, polynomial skew products provide an accessible generalization of one
variable dynamics to two variables and have been previously studied by many authors,
including Jonsson in [25] and DeMarco, together with the first author of this paper, in [11].
In Section 5 we provide the basic background on polynomial skew products and prove:

Theorem 1.3. Suppose f(z,w) = (p(z), q(z,w)) is a polynomial skew product.

• If Jz0
is disconnected for any z0 ∈ Jp, then W s([0 : 1 : 0]) has infinitely generated

first homology.
• Otherwise, W s([0 : 1 : 0]) is homeomorphic to an open ball.

The first statement is obtained by using Theorem 1.1, while the second is obtained using
Morse Theory.

For any endomorphism there is also the measure of maximal entropy µ = T ∧ T . Thus
another candidate for the name “Julia set” is J2 := supp(µ). The Julia set that is defined
as the complement of the Fatou set is sometimes denoted by J1, to distinguish it from J2.

The condition from Theorem 1.3 that for some z0 ∈ C, Jz0
is disconnected might seem

somewhat unnatural. A seemingly more natural condition might be that J2 is disconnected,
since for polynomial skew products it is known (see [25]) that J2 =

⋃
z∈Jp

Jz. However, in

Example 6.1 we present certain polynomial skew products with J2 connected, but with the
Fatou set having infinitely generated first homology. (These examples are obtained by ap-
plying Theorem 1.3 to examples from [25] and [11].) In fact, some of these examples persist
over an open set within a one-variable holomorphic family of polynomial skew products.
Therefore, for polynomial skew products, connectivity of the fiber Julia sets Jz is at least
as important as the connectivity of J2 to understanding the homology of the Fatou set.

In Section 6.2 we provide an example of a family of polynomial skew products fa depend-
ing on a single complex parameter a with the following property: if a is in the Mandelbrot
set M, then the Fatou set U(fa) is homeomorphic to the union of three open balls, while if
a is outside of M then H1(U(fa)) is infinitely generated.

Since neither of the sufficient conditions from Theorems 1.2 and 1.3 extend naturally to
general endomorphisms of Pk, it remains a mystery what is an appropriate condition for
endomorphism to have non-simply connected Fatou set. We conclude Section 6, and this
paper, with a discussion of a few potential further applications of the techniques of this
paper to holomorphic endomorphisms of Pk.
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2. The Green’s current T

We provide a brief reminder of the properties of the Green’s current that will be needed
later in this paper. We refer the reader who would like to see more details to [14, 21, 36].
While the following construction works more generally for generic (algebraically stable)
rational maps having points of indeterminacy, we restrict our attention to globally holo-
morphic maps of Pk.

Suppose that f : Pk → Pk is holomorphic and that the Jacobian of f does not identically
vanish on Pk. Then f lifts to a polynomial map F : Ck+1 → Ck+1 each of whose coordinates
is a homogeneous polynomial of degree d and so that the coordinates do not have a common
factor. It is a theorem that

G(z) = lim
n→∞

1

dn
log ||Fn(z)||(1)

converges to a plurisubharmonic1 function G : Ck+1 → [−∞,∞) called the Green’s function
associated to f . Since f is globally well-defined on Pk we have that F−1(0) = 0. It has been
established that G is Holder continuous and locally bounded on Ck+1 \ {0}.

If π : Ck+1 \ {0} → Pk is the canonical projection, there is a unique positive closed
(1, 1) current T on Pk satisfying π∗T = 1

2π
ddcG. (This normalization is not uniform–many

authors do not divide by 2π.) More explicitly, consider any open set V ⊂ Pk that is “small
enough” so that a holomorphic section σ : V → Ck+1 of π exists. Then, on V we have that
T is given by T = 1

2π
ddc(G ◦ σ). Choosing appropriate open sets covering Pk and sections

of π on each of them, the result extends to all of Pk producing a single closed positive (1, 1)
current on Pk independent of the choice of open sets and sections used. See [34, Appendix
A.4]. By construction, the Green’s current satisfies the invariance f∗T = d ·T . (See Section
3.3 for the definition of the pull-back f∗T .)

Recall that the Fatou set U(f) is the maximal open set in Pk where the family of iterates
{fn} form a normal family and that the Julia set of f is given by J(f) = Pk \ U(f). A
major motivation for studying the Green’s current is the following.

Theorem 2.1. Let f : Pk → Pk be a holomorphic endomorphism and let T be the Green’s
current corresponding to f . Then, J(f) = supp T .

See, for example, [14, Proposition 4.5] or [36, Theorem 2.2].

Remark 2.2. If f is a polynomial endomorphism, another form of Green’s function, given
by

Gaffine(z) = lim
1

dn
log+ ||fn(z)||(2)

is often considered in the literature. (Here log+ = max{log, 0}.) The result is again a PSH

function G : Ck → [0,∞).
We can relate Gaffine toG in the following way. Consider the open set V = Ck ⊂ Pk. Using

the section σ(z1, · · · , zk) = (z1, · · · , zk, 1), we find Gaffine(z1, · · · , zk) = G ◦ σ(z1, · · · , zk)
because ||F k ◦ σ|| only differs from ||fk|| by a bounded amount for each iterate k.

Therefore, if f is a polynomial endomorphism of Pk, one can compute T on Ck using the
formula T = 1

2π
ddcGaffine.

1We will often use the abbreviation PSH in place of plurisubharmonic and we use the convention that
PSH functions cannot be identically equal to −∞.
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Remark 2.3. Note that formulae (1) and (2) are independent of the norm ‖ ·‖ that is used
since any two norms are equivalent up to a multiplicative constant.

Remark 2.4. When k = 1, the resulting Green’s current is precisely the measure of maxi-
mal entropy µf whose support is the Julia set J(f) ⊂ P1. If f is a polynomial, then µf also
coincides with the harmonic measure on K(f), taken with respect to the point at infinity.

3. Linking with a closed positive (1, 1) current in Pk.

Suppose that S is an (appropriately normalized) closed positive (1, 1) current on Pk and
γ ⊂ Pk \ supp(S) is a piecewise smooth closed loop. We will define a linking number
lk(γ, S) ∈ R/Z, depending only on the homology class [γ] ∈ H1(P

k \ supp(S)).

3.1. Classical linking numbers in S3. Classically one considers the linking number of
two oriented loops c and d in S3. The linking number lk(c, d) ∈ Z is found by taking
any oriented surface Γ with oriented boundary c and defining lk(c, d) to be the signed
intersection number of Γ with d as in Figure 3.1. For this and many equivalent definitions
of linking number in S3 see [33, pp. 132-133], [8, pp. 229-239], and [31, Problems 13 and
14].

Γ

c

d

Figure 1. Here lk(c, d) = +2.

To see that this linking number is well-defined notice that assigning lk(c, d) = [Γ] · [d],
where · indicates the intersection product onH∗(S

3, c), coincides with the classical definition.
(For background on the intersection product on homology, see [9, pages 366-372].) If Γ′ is
any other 2-chain with ∂Γ′ = c then ∂(Γ − Γ′) = [c] − [c] = 0 and (Γ − Γ′) represents a
homology class in H2(S

3). Since H2(S
3) = 0, [Γ−Γ′] = 0 forcing [Γ−Γ′] · [d] = 0. Therefore:

[Γ] · [d] = [Γ′] · [d], so that lk(c, d) is well defined.

3.2. Generalization. Given any closed positive (1, 1) current S on Pk and any piecewise
smooth two chain σ in Pk with ∂σ disjoint from supp S, we can define

〈σ, S〉 =

∫

σ

ηS

where ηS is a smooth approximation of S within it’s cohomology class in Pk − ∂σ, see [16,
pages 382-385]. The resulting number 〈σ, S〉 will depend only on the cohomology class of S
and the homology class of σ within H2(P

k, ∂σ). (Note that if S is already a smooth form,
one need not require that ∂σ be disjoint from supp S.)

Notice that H2(P
k) is generated by the class of any complex projective line L ⊂ Pk.

Since S is non-trivial, 〈L,S〉 6= 0, so that after an appropriate rescaling we can assume that
〈L,S〉 = 1. In the remainder of the section we assume this normalization. (It is satisfied by
the Green’s Current from Section 2.)
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What made the linking numbers in S3 well-defined, independent of the choice of Γ, is that
H2(S

3) = 0. One cannot make the immediately analogous definition that lk(γ, S) = 〈Γ, S〉
in Pk, since H2(P

k) 6= 0 implies that 〈Γ, S〉 can depend on the choice of Γ. For example,
given Γ with ∂Γ = γ then ∂Γ′ = γ for Γ′ = Γ+L, however 〈Γ′, S〉−〈Γ, S〉 = 〈L,S〉 = 1 6= 0.

There is a simple modification: Given any Γ and Γ′ both having boundary γ, [Γ′ − Γ] ∈
H2(P

k) so that [Γ′ − Γ] ∼ k · [L] for some k ∈ Z. Since S is normalized, this gives that
〈Γ′, S〉 = 〈Γ, S〉 (mod 1).

Definition 3.1. Let S be a normalized closed positive (1, 1) current on Pk and let γ be a
piecewise smooth closed curve in Pk \ supp(S). We define the linking number lk(γ, S) by

lk(γ, S) := 〈Γ, S〉 (mod 1)

where Γ is any piecewise smooth two chain with ∂Γ = γ.

Unlike linking numbers between closed loops in S3, it is often the case that that 〈Γ, S〉 6∈ Z,
resulting in non-zero linking numbers (mod 1). See Subsection 3.4 for an explicit example.

Proposition 3.2. If γ1 and γ2 are homologous in H1(P
k \ supp S), then lk(γ1, S) =

lk(γ2, S).

Proof. Let Γ be any piecewise smooth two chain contained in Pk \supp S with ∂Γ = γ1−γ2.
Then, since Pk\supp S is open and Γ is compact subset, Γ is bounded away from the support
of S. Consequently for any smooth approximation ηS of S supported in a sufficiently small
neighborhood of S, we have lk(γ1, S) − lk(γ2, S) =

∫
Γ
ηT = 0. �

Corollary 3.3. If γ ∈ Pk \ supp S with lk(γ, S) 6= 0, then γ is a homologically non-trivial
loop in Pk \ supp S.

Since lk(γ, S) depends only on the homology class of γ and the pairing 〈·, S〉 is linear in
the space of chains σ (having ∂σ disjoint from supp S), the linking number descends to a
homomorphism:

lk(·, S) : H1(P
k \ supp S) → R/Z.

Similarly lk(·, S) : H1(Ω) → R/Z for any open Ω ⊂ Pk \ supp S.

Remark 3.4. (Topological versus Geometric linking numbers.) The classical linking
number, and also Definition 3.1, depend only on the homology class of the loop γ (in the
complement of some other loop of the support of some current, respectively.)

A linking number depending on the geometry of γ is given by

l̂k(γ, T ) := 〈Γ, S − Ω〉 ∈ R,

where ∂Γ = γ and Ω is (normalization of) the Kähler form defining the Fubini-Study metric
on Pk. Given any Γ and Γ′ both having boundary γ we have that 〈Γ − Γ′, T − Ω〉 = 0, since
S and Ω are cohomologous. (In the language of [32, p. 132], we say that T − Ω is in the
“linking kernel of Pk”.)

Because supp Ω = Pk, the statement of Proposition 3.2 does not apply. Rather, l̂k(γ, S)
depends on the geometry of γ ⊂ Pk \ supp S. In fact, similar linking numbers were used
in [17, 18] to determine if a given real-analytic γ has the appropriate geometry to be the
boundary of a positive holomorphic 1-chain (with bounded mass).
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Remark 3.5. (Other manifolds.) Suppose that M is some other compact complex man-
ifold with H2(M) of rank k, generated by σ1, . . . , σk. If 〈σ1, S〉 , . . . , 〈σk, S〉 are rationally
related, then S can be appropriately rescaled so that Definition 3.1 provides a well-defined
linking number between any piecewise smooth closed curve γ ∈M \suppS and S. If H2(M)
has rank k > 1, this provides a rather restrictive cohomological condition on S. (It is similar
to the restriction of being in the “linking kernel” described in [32].)

3.3. Invariance and restriction properties of 〈·, ·〉. Suppose that Ω,Λ are open subsets
of Cj and Ck, and f : Ω → Λ is a (possibly ramified) analytic mapping. Let S be a closed
positive (1, 1) current given on Λ by S = ddcu for some PSH function u. If f(Ω) is not
contained in the polar locus of u, then the pull-back of S under f is defined by pulling back
the potential: f∗(S) := ddc(u ◦ f). Since u ◦ f is not identically equal to −∞, it is also a
PSH function, and f∗(S) is a well-defined closed positive (1, 1) current.

Suppose that M and N are complex manifolds and that S is a closed positive (1, 1)
current on N . If f : M → N is a holomorphic map with f(M) not entirely contained in
the polar locus of S, then the pull-back f∗S can be defined by taking local charts and local
potentials for S. See [34, Appendix A.7] and [21, p. 330-331] for further details.

Proposition 3.6. Suppose that S is a closed positive (1, 1) current on N and f : M → N ,
with f(M) not contained in the polar locus of S. If σ is a piecewise smooth two chain in
M with ∂σ disjoint from supp f∗S, then 〈f∗σ, S〉 = 〈σ, f∗S〉.
Proof. Since f(M) is not contained in the polar locus of S, f∗S is well-defined. Since ∂σ
is disjoint from suppf∗S, ∂f(σ) is disjoint from suppS. Let ηS be a smooth approximation
of S in the same cohomology class as S and having support disjoint from ∂f(σ). Then,
〈f∗σ, S〉 =

∫
f∗σ

ηS =
∫
σ
f∗ηS = 〈σ, f∗S〉, since f∗ηS is a smooth approximation of f∗S. �

In the case that M is an analytic submanifold of N not entirely contained in the polar
locus of S, the restriction of S to M is defined by S|M := ι∗S, where ι : M → N is
the inclusion. When computing linking numbers, we will often choose Γ within some one-
complex dimensional curve M in N , with M not contained in the polar locus of S. In that
case S|M is a positive measure on M and we can use the following:

Corollary 3.7. Let S be a positive closed (1, 1) current on N and M be an analytic curve
in N that is not entirely contained in the polar locus of S. If Γ is a piecewise smooth two
chain in M with ι(∂Γ) disjoint from supp S, then

〈ι(Γ), S〉 =

∫

Γ

S|M .(3)

Proof. Proposition 3.6 gives 〈ι(Γ), S〉 ≡ 〈ι∗Γ, S〉 = 〈Γ, ι∗S〉 = 〈Γ, S|M 〉 . Any positive (1, 1)
current on M is a positive measure. Thus,

∫
Γ
S|M is defined, and coincides with the result

obtained by first choosing a smooth approximation to S|M . Thus 〈Γ, S|M 〉 =
∫
Γ
S|M . �

In the remainder of the paper, we will not typically distinguish between Γ and ι(Γ).

3.4. Linking with the Green’s Current. We conclude the section with some observa-
tions specific to the Green’s current T , including the proof of Theorem 1.1, as well as an
example illustrating the definitions given above. It is worth noting that the Green’s current
has empty polar locus, since G is locally bounded on Ck+1 \ {0}, so that the hypotheses of
Proposition 3.6 and Corollary 3.7 are easy to check.
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Proposition 3.8. Suppose that f : Pk → Pk, W s(ζ) ⊂ U(f) is the basin of attraction of
some attracting periodic cycle ζ, and T is the Green’s Current of f . Then

lk(·, T ) : H1(W
s(ζ)) → Z[1/d]/Z ⊂ Q/Z.

Proof. Suppose that ζ is of period N . Then, the basin of attraction W s(ζ) contains a union
of small open balls B0, . . . , BN−1 centered at each point ζ, . . . , fN−1(ζ) of the orbit ζ. Since
H1(W

s(ζ)) is generated by the classes of piecewise smooth loops, it is sufficient to consider
a single such loop γ. Since γ is a compact subset of W s(ζ), there is some n so that fn(γ) is
contained in ∪Bi, giving that fn(γ) has trivial homology class in H1(W

s(ζ)). In particular,
lk(fn(γ), T ) = 0 (mod 1), so that for any Γ with ∂Γ = γ we have 〈fn(Γ), T 〉 = k for some
integer k.

Recall that f∗T = dT , where d is the algebraic degree of f . Proposition 3.6 gives that
k = 〈fn(Γ), T 〉 = 〈Γ, (f∗)nT 〉 = dn 〈Γ, T 〉. In particular, lk(γ, T ) ≡ k/dn (mod 1). �

Using Proposition 3.8, Theorem 1.1 presents a general strategy for showing thatH1(U(f))
is infinitely generated.

Proof of Theorem 1.1: Since Ω is a union of basins of attraction for attracting periodic
points of f , Proposition 3.8 gives that lk(·, T ) : H1(Ω) → Q/Z. There are homology classes
c ∈ H1(Ω) with lk(c, T ) 6= 0 arbitrarily close to zero, so, since lk(·, T ) is a homomorphism,
the image of lk(·, T ) : H1(Ω) → Q/Z is dense in Q/Z. Because any dense subgroup of
Q/Z is infinitely generated, the image of lk(·, T ) is infinitely generated, hence H1(Ω) is, as
well. �

Example 3.9. Consider the polynomial skew product (z,w) 7→ (z2, w2 + 0.3z), for which
the Fatou set consists of the union of basins of attraction for three super-attracting fixed
points: [0 : 1 : 0], [0 : 0 : 1], and [1 : 0 : 0]. In Figure 2 we show a computer generated image
of the intersection of W s([0 : 1 : 0]) (lighter grey) and W s([0 : 0 : 1]) (dark grey) with the
vertical line z = z0 = 0.99999. In terms of the fiber-wise Julia sets that were mentioned in
the introduction, Kz0

is precisely the closure of the dark grey region and Jz0
is its boundary.

We will see in Proposition 5.1 that T |z=z0
is precisely the harmonic measure on Kz0

.
Using this knowledge, and supposing that the computer image is accurate, we illustrate
how the above definitions can be used to show that the smooth loop γ shown in the figure
represents a non-trivial homology class in H1(W

s([0 : 1 : 0])).
Suppose that we use the two chain Γ1 that is depicted in the figure to compute lk(γ, T ).

The harmonic measure on Kz0
is supported in Jz0

and equally distributed between the four
symmetric pieces with total measure of Kz0

is 1. Therefore (using Corollary 3.7) we see
that lk(γ, T ) =

∫
Γ1
T |z=z0

= 1
4

(mod 1), because Γ1 covers exactly 1 these 4 pieces of Kz0
.

If instead we use Γ2, the disc “outside of γ” within the projective line z = z0 with the
orientation chosen so that ∂Γ2 = c as depicted, then lk(γ, T ) =

∫
Γ2
T |z=z0

= −3
4

(mod 1)

(because Γ2 covers 3 of the 4 symmetric pieces of Kz0
, but with the opposite orientation

than that of Γ1). However, −3
4

(mod 1) = 1
4

(mod 1), so we see that the computed linking
number does come out the same.

Since lk(γ, T ) 6= 0 (mod 1), Corollary 3.3 gives that it is impossible to have any 2-chain
Λ within W s([0 : 1 : 0]) (even outside of the vertical line z = z0) so that ∂Λ = c. Thus
[γ] 6= 0 ∈ H1(W

s([0 : 1 : 0])).
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γ

Γ2

Γ1

Figure 2. Both choices Γ1 (inside of γ) and Γ2 (outside of γ) yield the same lk(γ, T ).

4. Application to Polynomial Endomorphisms of P2

Having developed the linking numbers in Section 3, Theorem 1.2 will be a consequence
of the following well-known result:

Theorem 4.1. [1, Thm. 5.7.1] Let g : P1 → P1 be a rational map. Then, if J(g) is discon-
nected, it contains uncountably many components, and each point of J(g) is an accumulation
point of infinitely many distinct components of J(g).

Let us begin by studying the Fatou set of one-dimensional maps:

Proposition 4.2. If g : P1 → P1 is a hyperbolic rational map with disconnected Julia set
J(g), then the Fatou set U(g) has infinitely generated first homology.

Remark 4.3. When reading the proof of Proposition 4.2, it is helpful to keep in mind two
examples. The first is the polynomial r(z) = z3 − 0.48z + (0.706260 + 0.502896i) for which
one of the critical points escapes to infinity, while the other is in the basin of attraction for
a cycle of period 3. The result is a filled Julia set with infinitely many non-trivial connected
components, each of which is homeomorphic to the Douady’s rabbit. (See [30].)

The second example are maps of the form f(z) = zn + λ/zh, which were considered in
[28]. For suitable n, h, and λ the Julia set is a Cantor set of nested simple closed curves.

Proof of Proposition 4.2: Since g is hyperbolic, U(g) consists of the basins of attraction
of finitely many attracting periodic points. Therefore, according to Theorem 1.1, it is
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sufficient to find elements of H1(U(g)) having non-zero linking numbers with T = µg that
are arbitrarily close to 0.

Theorem 4.1 will allow us to find a sequence of piecewise smooth two chains Γ1,Γ2, . . .
so that 0 < 〈Γn−1, µG〉 < 〈Γn, µG〉 < 1 and ∂Γn ⊂ U(g), as follows.

For each n, Γn will be a union of disjoint positively-oriented closed discs in P1, each
counted with weight one. Since J(g) is disconnected, we can find a piecewise smooth oriented
loop γ1 ⊂ U(g) that separates J(g). Let Γ1 be the positively-oriented disc in P1 having γ1

as its oriented boundary. Since µg is normalized and γ1 separates J(g) = supp(µg), we have
0 < 〈Γ1, µg〉 < 1. Now suppose that Γ1, . . . ,Γn−1 have been chosen. Since 〈Γn−1, µg〉 < 1,
we have J(g) ∩ (P1 \ Γn−1) 6= ∅. Then, according to Theorem 4.1, there is more than one
component of J(g)∩ (P1 \Γn−1), so we can choose an oriented loop γn ⊂ U(g)∩ (P1 \Γn−1)
so that at least one component of J(g) ∩ (P1 \ Γn−1) is on each side of γn. Then, we let Γn

be the union of oriented discs in P1 consisting of the points inside of γn and any discs from
Γn−1 that are not inside of γn.

Considering the homology class [∂Γn − ∂Γn−1] ∈ H1(U(g)) we have that

lk([∂Γn − ∂Γn−1], µg) = 〈Γn, µG〉 − 〈Γn−1, µG〉 (mod 1)

is non-zero for each n. However, since
∑

n

〈Γn, µG〉 − 〈Γn−1, µG〉

is bounded by 1, we have that lk([∂Γn − ∂Γn−1], µg) → 0 in Q/Z. Theorem 1.1 then gives
that H1(U(g)) is infinitely generated. �

Let f : P2 → P2 be a polynomial endomorphism given in projective coordinates by

f([Z : W : T ]) = [P (Z,W, T ) : Q(Z,W, T ) : T d].(4)

Since f : P2 → P2 is assumed globally holomorphic, P (Z,W, T ), Q(Z,W, T ), and T d have
no common zeros other than (0, 0, 0).

The (projective) line at infinity Π := {T = 0} is uniformly super-attracting and the
restriction fΠ is given in homogeneous coordinates by

fΠ : ([Z : W ]) → [P0(Z,W ) : Q0(Z,W )].(5)

where P0 := P (Z,W, 0) and Q0 := Q(Z,W, 0).
Let U(f) be the Fatou set for f and U(fΠ) the Fatou set for fΠ. The former is an open

set in P2, while the latter is an open set in the line at infinity Π.

Lemma 4.4. If fΠ is hyperbolic then U(fΠ) ⊂ U(f).

Proof. Since fΠ is hyperbolic, U(fΠ) is in the union of the basins of attraction W s
Π(ζi) of a

finite number of periodic attracting points ζ1, . . . , ζk. The line at infinity Π is transversally
superattracting, so each ζi is superattracting in the transverse direction to Π and (at least)
geometrically attracting within Π. Let W s(ζi) ⊂ P2 be the basin of attraction for ζi under
f . Then, W s

Π(ζi) ⊂W s(ζi), giving U(fΠ) ⊂ U(f). �

Let T be the Green’s current for f and let µΠ be the measure of maximal entropy for the
restriction f|Π.

Lemma 4.5. The restriction T|Π coincides with µΠ.
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Proof. Consider the lift FΠ : C2 → C2 of the rational map fΠ : P1 → P1. As observed in
Remark 2.4,

GΠ(Z,W ) = lim
1

dn
log ||Fn

Π(Z,W )||

is the potential for µΠ, meaning that π∗µΠ = 1
2π
ddcGΠ.

The restriction T|Π is obtained by restricting of the potential G to π−1(Π) = {(Z,W, 0) ∈
C3}. Specifically, it is defined by π∗(T|Π) = 1

2π
ddc(G(Z,W, 0)). Therefore, it suffices to show

that G(Z,W, 0) = GΠ(Z,W ). However, this follows directly from the fact that F (Z,W, 0) =
FΠ(Z,W ). (Here F is the lift of f to C3, as given by (4) when considered in non-projective
coordinates [Z,W, T ].) �

Proof of Theorem 1.2. As in the proof of Proposition 4.2, we can find a sequence of 1-
cycles cn in U(fΠ) having linking numbers with µΠ arbitrarily close to 0 in Q/Z. Since
f|Π is hyperbolic, Lemma 4.4 gives that each cn is in the union of basins of attraction for
finitely many attracting periodic points of f . In particular, lk(ci, T ) is well-defined for
each n. Lemma 4.5 gives that T|Π = µΠ, so that lk(cn, T ) (considering cn in P2) coincides
with lk(cn, µΠ) (considering cn in the projective line Π). Therefore, lk(cn, T ) 6= 0 and
lk(cn, T ) → 0 in Q/Z. Theorem 1.1 gives that the union of these basins has infinitely
generated first homology, and hence U(f) does as well. �

Example 4.6. We embed the polynomial dynamics of r(z) from Remark 4.3 as the dy-
namics on the line at infinity Π for a polynomial endomorphism of P2. Let R(Z,W ) =
Z3−0.48ZW 2+(0.706260+0.502896i)W 3 be the homogeneous form of r, and let P (Z,W, T )
and Q(Z,W, T ) be any homogeneous polynomials of degree 2. Then

f([Z : W : T ]) = [R(Z,W ) + T · P (Z,W, T ) : W 3 + T ·Q(Z,W, T ) : T 3]

is a polynomial endomorphism with fΠ = r. In this case, Theorem 1.2 gives that the basin
of attraction of [1 : 0 : 0] for f has infinitely generated first homology.

Remark 4.7. Suppose that f : Pk → Pk is a holomorphic endomorphism having an invari-
ant projective line Π. Lemma 4.5 can be extended to give that T|Π = µΠ, where µΠ is the
measure of maximal entropy for the one-dimensional map f|Π. If Π is at least geometrically
attracting transversally, f|Π is hyperbolic, and J(f|Π) is disconnected, then essentially the
same proof as that of Theorem 1.2 gives that the Fatou set U(f) has infinitely generated
first homology.

Using this observation, one can inductively create sequences of polynomial endomor-
phisms fk : Pk → Pk, for every k, each having Fatou set with infinitely generated first
homology. One begins with a hyperbolic polynomial endomorphism f1 of the Riemann
sphere P1 having disconnected Julia set. Then, for each k, one can let fk : Pk → Pk be any
polynomial endomorphism whose dynamics on the hypersurface Pk−1 at infinity is given
by fk−1. (When k = 2, the construction of f2 : P2 → P2 is similar to that from Example
4.6.) The resulting maps each have a totally-invariant projective line Π that is transversally
superattracting with fk|Π = f1 hyperbolic with disconnected Julia set. Thus, the Fatou set

U(fk) has infinitely generated first homology.
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5. Application to Polynomial skew products

A polynomial skew product is a polynomial endomorphism of the form

f(z,w) = (p(z), q(z,w))

with p and q polynomials of degree d where p(z) = zd +O(zd−1) and q(z) = wd +Oz(w
d−1).

(See Jonsson [25].) Theorem 1.2 can by applied to many polynomial skew products f to
show that that H1(U(f)) is infinitely generated; for example, f(z,w) = (z2, w2 + 10z2),
which has JΠ a Cantor set. Next we will find alternative sufficient conditions under which
a polynomial skew product has Fatou set with infinitely generated first homology, proving
Theorem 1.3. This theorem will apply to many maps to which Theorem 1.2 does not apply;
for example, f(z,w) = (z2, w2 − 3z), for which JΠ is equal to the unit circle.

5.1. Preliminary background on polynomial skew products. The Green’s current
for any polynomial endomorphism can be computed in the affine coordinates on C2 as
T := 1

2π
ddcGaffine, where Gaffine is the (affine) Green’s function defined in Remark 2.2.

The “base map” p(z) has a Julia set Jp ⊂ C and, similarly, a Green’s function Gp(z) :=

limn→∞
1
dn log+ ||pn(z)||. Furthermore, one can define a fiber-wise Green’s function2 by:

Gz(w) := Gaffine(z,w) −Gp(z).

For each fixed z, Gz(w) is a subharmonic function of w and one defines the fiber-wise Julia
sets by Kz := {Gz(w) = 0} and Jz := ∂Kz .

The extension of f to P2 is given by

f([Z : W : T ]) = [P (Z, T ) : Q(Z,W, T ) : T d],(6)

where P (Z, T ) and Q(Z,W, T ) are the homogeneous versions of p and q. The point
[0 : 1 : 0] that is “vertically at infinity” with respect to the affine coordinates (z,w) is
a totally-invariant super-attracting fixed point and (z,w) ∈ W s([0 : 1 : 0]) if and only if
w ∈ C \Kz.

Suppose that (z,w) ∈W s([0 : 1 : 0]) and (zn, wn) := fn(z,w). Then,

Gaffine(z,w) = lim
1

dn
log+ ‖fn(z,w)‖∞ = lim

1

dn
log+ |wn| and(7)

Gz(w) = Gaffine(z,w) −Gp(z) = lim
1

dn
log+ |wn| − lim

1

dn
log+ |zn|.(8)

since |wn| > |zn| for all n sufficiently large.
As mentioned in Section 3.3, we can restrict the current T to any analytic curve obtaining

a measure on that curve. Of particular interest for skew products is the restriction µz0
of

T to a vertical line {z0} × P. The following appears as Jonsson [25] Proposition 2.1 (i), we
repeat it here for completeness:

Proposition 5.1. The restriction T|z=z0
of the Green’s current T to a vertical line ({z0}×P)

coincides with the harmonic measure µz0
on Kz0

.

2For the purist: the Green’s functions Gp and Gz should also have the subscript “affine”, but it is dropped
here for ease of notation. See Section 2 for the distinction.
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Proof. Notice that

T|z=z0
=

1

2π
ddcGaffine|z=z0

=
1

2π
ddcGaffine(z0, w)

=
1

2π
ddc (Gaffine(z0, w) −Gp(z0)) =

1

2π
ddcGz0

(w).

According to [25, Thm 2.1], Gz0
is the Green’s function for Kz with pole at infinity. We

have thus obtained that µz0
is exactly the harmonic measure µz0

on Kz0
. �

5.2. Topology of the basin of attraction W s([0 : 1 : 0]).

Proposition 5.2. If ζ is a totally-invariant (super)-attracting fixed point for a holomorphic

f : CPk → CPk, then W s(ζ) is path-connected.

A nearly identical statement is proven for CP2 in Theorem 1.5.9 from [22]. We refer the

reader to their proof since it is nearly identical for CPk. In particular, for any skew product
W s([0 : 1 : 0]) is path connected.

Although Gz(w) is subharmonic in w for any fixed z, it does not form a PSH function
of both z and w. Consider the points (z,w) ∈ W s([0 : 1 : 0]) for which z ∈ Jp. At these
points Gaffine is pluriharmonic, i.e. ddcGaffine = 0, but Gp(z) is not pluriharmonic, i.e.
ddcGp(z) > 0. Therefore, at these points ddcGz(w) < 0, so Gz(w) is not PSH.

Lemma 5.3. The function −Gz(w) is PSH at all points (z,w) ∈W s([0 : 1 : 0])∩C2 and it
extends to a PSH function on all of W s([0 : 1 : 0]). The resulting function is pluriharmonic
on W s([0 : 1 : 0]) except at points for which Z/T ∈ Jp.

Proof. Since −Gz(w) = Gp(z)−Gaffine(z,w), with Gaffine(z,w) pluriharmonic in W s([0 : 1 :
0]) and Gp(z) PSH everywhere, the result is PSH in W s([0 : 1 : 0]) ∩ C2.

Jonsson proves in [25, Lemma 6.3] that Gz(w) extends as a PSH function in a suitable
neighborhood of Π \ {[0 : 1 : 0]} and his proof immediately gives that the result is pluri-
harmonic in a (possibly smaller) neighborhood within W s([0 : 1 : 0]) of Π \ {[0 : 1 : 0]}.
Therefore, −Gz(w) is also pluriharmonic in the same neighborhood.

Thus, −Gz(w) extends to a PSH on W s([0 : 1 : 0])\{[0 : 1 : 0]} and, assigning −∞ to [0 :
1 : 0], gives the desired extension to all of W s([0 : 1 : 0]). The result will be pluriharmonic
except at [0 : 1 : 0] and at the points in W s([0 : 1 : 0]) ∩ C2 where ddc(−Gz(w)) > 0, that
is the points where Z/T ∈ Jp. �

Proof of Theorem 1.3: We first suppose that Jz0
is disconnected for some z0 ∈ Jp. Let

z1, z2, . . . be any sequence of iterated preimages of z0 so that pn(zn) = z0.
Consider the vertical line {z0} × C. Since Jz0

is disconnected, so is Kz0
, and we can

choose two disjoint positively-oriented piecewise smooth loops η1, η2 ⊂ {z0} × (C \Kz0
)

each enclosing a proper subset of Kz0
.

Perturbing η1, η2 within {z0} × (C \Kz0
), if necessary, we can suppose that none of the

d− 1 critical values of f |{z1}×C : {z1}×C → {z0}×C (counted with multiplicity) are on η1

or η2. Since the regions enclosed by η1 and η2 are disjoint, at least one of them contains at
most d− 2 of these critical values. Let γ0 be this curve.

Since γ0 ⊂ {z0} × (C \Kz0
), γ0 ⊂ W s([0 : 1 : 0]). Because γ0 is compact, it is bounded

away from supp(T ), and the linking number lk(γ0, T ) is a well defined invariant of the
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homology class [γ] within H1(W
s([0 : 1 : 0])). We let Γ0 be the closed disc in ({z0} × C)

having γ0 as its oriented boundary. Since Γ0 contains some proper subset of Kz0
(and hence

of Jz0
) with supp(µz0

) = Jz0
, we have that

0 < 〈Γ0, T 〉 =

∫

Γ0

µz0
< 1.

Therefore, lk(γ0, T ) = 〈Γ0, T 〉 (mod 1) 6= 0 (mod 1), giving that [γ0] is non-trivial.

Consider the preimages D1, . . . ,Dj of Γ0 under f |{z1}×C : {z1}×C → {z0}×C. Since at
most d − 2 critical values of the degree d ramified cover f |{z1}×∪Di

are contained in Γ0, it
is a consequence of the Riemann-Hurwitz Theorem that the Euler characteristic of ∪Di is
greater than or equal to 2. Because each Di is a domain in C, at least two components D1

and D2 are discs.
The total degree of f |{z1}×C : ∪Di → Γ0 is d, so f |{z1}×C : Di → Γ0 a ramified covering

of degree ki ≤ d− 1 for each i. Proposition 3.6 and the basic invariance f∗T = d ·T for the
Green’s current give that

〈Di, T 〉 =
1

d
〈Di, f

∗T 〉 =
1

d
〈f∗Di, T 〉 =

1

d
〈kiΓ0, T 〉 ≤

d− 1

d
〈Γ0, T 〉(9)

for each i.
As before, we can perturb the boundaries of D1 and D2 within {z1} × (C \Kz1

) so that
none of the critical values of f |{z2}×C lie on their boundaries and so that D1 and D2 remain
disjoint. (It will not affect the pairings given by (9)). At least one of the discs D1,D2

contains at most d − 2 critical values of f |{z2}×C . We let Γ1 be that disc and γ1 = ∂Γ1.
Then

0 < 〈Γ1, T 〉 ≤
d− 1

d
〈Γ0, T 〉 ≤

d− 1

d
.

Continuing in the same way, we can find a sequence of discs Γ0,Γ1, . . . so that

• Γn ⊂ {zn} × C,
• γn = ∂Γn ⊂W s([0 : 1 : 0]),
• Γn contains at most d − 2 critical values of f |{zn+1}×C (counted with multiplicity),

and
• 〈Γn, T 〉 ≤ d−1

d
〈Γn−1, T 〉.

Consequently,

0 < 〈Γn, T 〉 ≤
(
d− 1

d

)n

,

giving that lk(γn, T ) → 0 in Q/Z. Therefore, Theorem 1.1 gives that H1(W
s([0 : 1 : 0])) is

infinitely generated.

We will now show that if Jz is connected for every z ∈ Jp, then W s([0 : 1 : 0]) is
homeomorphic to an open ball. Consider the local coordinates z′ = Z/W , t′ = T/W ,
chosen so that (z′, t′) = (0, 0) corresponds to [0 : 1 : 0]. In these coordinates

f(z′, t′) =

(
P (z′, t′)

Q(z′, 1, t′)
,

t′d

Q(z′, 1, t′)

)
,
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where P and Q are the homogeneous versions of p and q appearing in Equation (6). The
assumption that q(z) = wd + Oz(w

d−1) and p(z) = zd + O(zd−1) imply that we have the
expansion

f(z′, t′) = (P (z′, t′), t′d) + g(t′, z′),

with (P (z′, t′), t′d) non-degenerate of degree d and g(t′, z′) consisting of terms of degree d+1
and larger.

Therefore, we can construct a potential function3 for the superattracting point (0, 0):

h(z′, t′) := lim
n→∞

1

dn
log ‖fn(z′, t′)‖∞.(10)

The result is a continuous pluri-subharmonic function [22] with logarithmic singularity at
(z′, t′) = (0, 0) having the property that (z′, t′) ∈ W s([0 : 1 : 0]) \ {[0 : 1 : 0]} if and only if
h(z′, t′) < 0. In particular,

h : W s([0 : 1 : 0]) \ {[0 : 1 : 0]} −→ (−∞, 0)

is proper.
If we let (z′n, t

′
n) = fn(z′, t′), then Equation (10) simplifies to

h(z′, t′) =

{
lim 1

dn log |t′n| if z′/t′ ∈ Kp and

lim 1
dn log |z′n| if z′/t′ 6∈ Kp.

(11)

since z′n+1/t
′
n+1 = p(z′n/t

′
n). Equation (8) gives that in the original affine coordinates (z,w)

we have

h(z,w) =

{
lim 1

dn log |t′n| = − lim 1
dn log |wn| = −Gz(w) if z ∈ Kp and,

lim 1
dn log |z′n| = log |z| − lim 1

dn log |wn| = −Gz(w) if z 6∈ Kp,
(12)

which is harmonic on the intersection of any vertical line {z} × C with W s([0 : 1 : 0]) and
pluriharmonic except when z ∈ Jp; see Lemma 5.3. A similar calculation shows that h
coincides with the extension of −Gz(w) described in Lemma 5.3 and that the restriction
of h to Π is −GΠ. (Here, GΠ is the Green’s function for the action fΠ of f on the line at
infinity.)

Therefore, h(z′, t′) is pluriharmonic on W s([0 : 1 : 0]) \ {(z′, w′) : z′/w′ ∈ Jp} and the
restriction of h(z′, t′) to any line through (0, 0) is harmonic on W s([0 : 1 : 0]) \ {[0 : 1 : 0]},
with a logarithmic singularity at (0, 0).

Since Jz0
is connected for every z0 ∈ Jp, Proposition 6.3 from [25] gives that Jz is

connected for every z ∈ C and also JΠ is connected, or, equivalently, that Gz(w) (for any
z) and GΠ have no (escaping) critical points. Therefore, the restriction of h to any complex
line through (0, 0) has no critical points in W s([0 : 1 : 0]).

The sublevel set Wa := h−1([−∞, a)) is open for any a ∈ (−∞, 0) since h : W s([0 : 1 :
0]) \ {[0 : 1 : 0]} → (−∞, 0) is continuous with h(z′, t′) → −∞ if and only if (z′, t′) → (0, 0).

3The potential function h is sometimes also be called the Green’s function of the point (0, 0).



16 S. Hruska and R. Roeder

Equation 2.2 from [25] implies that

h(z′, t′) = log |t′| +Gp

(
z′

t′

)
+ η(z′, t′) if t′ 6= 0, and

h(z′, t′) = log |z′| +G#
p

(
t′

z′

)
+ η(z′, t′) if z′ 6= 0,

with η(z′, t′) becoming arbitrarily small for (z′, t′) sufficiently small and G#
p (x) obtained

by extending Gp(1/x) − log(1/x) continuously through x = 0. Therefore, for a sufficiently
negative, the intersection of Wa with any complex line through (0, 0) will be convex. In
particular, Wa is an star-convex open subset in C2, implying that it is homeomorphic to an
open ball. (See [7, Theorem 11.3.6.1].)

We define a new function h̃ which agrees with h except in the interior of Wa, where we
make a C∞ modification (assigning values less than a) in order to remove the logarithmic
singularity at [0 : 1 : 0].

We will use h̃ as Morse function to show that Wb := h−1([−∞, b)) is diffeomorphic
to Wa for any b ∈ (a, 0). The classical technique from Theorem 3.1 of [29] would use

the normalization of −∇h̃ to generate a flow whose time (b − a) map gives the desired

diffeomorphism. This will not work in our situation, since h̃ is not differentiable at points

for which z′/w′ ∈ Jp. However, essentially the same proof works if we replace −∇h̃ with any

C1 vector field V on W s([0 : 1 : 0]) having no singularities in h̃−1([a, b]) and along which h̃

is decreasing. Note that, as in [29], we need that h̃−1([a, b]) is compact, which follows from
h being proper.

Let V be the the vector field parallel to each line through (z′, t′) = (0, 0), obtained within

each line as minus the gradient of the restriction of h̃ to that line. The restriction of h̃

to each complex line through (0, 0) has no critical points in h̃−1([a, b]), so it is decreasing
along V . Since h is pluriharmonic for points with z′/t′ 6∈ Jp, it follows immediately that
V is smooth there. To see that V is smooth in a neighborhood of points where z′/t′ ∈ Jp,
notice that

∇wGz(w) = ∇wG(z,w) −Gp(z) = ∇wG(z,w),

with G(z,w) pluriharmonic on W s([0 : 1 : 0]) ∩ C2.
Therefore, for any b ∈ (a, 0), Wb is homeomorphic to Wa and thus to an open ball.

One can then make a relatively standard construction, using these homeomorphisms for b
increasing to 0, in order to show that W s([0 : 1 : 0]) = ∪b<0Wb is homeomorphic to an open
ball. �

6. Further applications

In this final section we discuss a few examples of maps to which we have applied the
results of this paper, and then a few types of maps which we feel would be fruitful to study
further with techniques similar to those of this paper.

6.1. Relationship between connectivity of J2 and the topology of the Fatou set for
polynomial skew products. For polynomial skew products, J2 = supp(µ) = supp(T ∧
T ) =

⋃
z∈Jp

Jz, which by [25] is also the closure of the set of repelling periodic points. Here

we examine to what extent connectivity of J2 affects the homology of the Fatou set U .
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The following example shows that there are many polynomial skew products f with J2

connected for which H1(U(f)) is non-trivial (in fact infinitely generated.)

Example 6.1. Consider f(z,w) = (z2 − 2, w2 + 2(2 − z)) which has J2 connected and has
Jz disconnected over z = −2 ∈ Jp, as shown in [25, Example 9.7]. Theorem 1.3 immediately
applies, giving that H1(U(f)) is infinitely generated.

In fact, examples of this phenomenon can appear “stably” within a one parameter family.
Let pn(z) = z2 + cn be the unique quadratic polynomial with periodic critical point of least
period n and cn real. Then, [11, Theorem 6.1] yields that for n sufficiently large,

fn(z,w) = (pn(z), w2 + 2(2 − z))

is Axiom A with Jz disconnected for most z ∈ Jpn and with J2 connected. Suppose that fn is
embedded within any holomorphic one-parameter family fn,λ of polynomial skew products.
Then, Theorems 4.1 and 4.2 from [11] (see also, [24, Thm C]) give that all maps fn,λ within
the same hyperbolic component as fn also have J2 connected, but Jz disconnected over
most z in Jpn,λ

. (Here, pn,λ is the first component of fn,λ.) An immediate application of
Theorem 1.3 yields that H1(U(fn,λ)) is infinitely generated for all fn,λ within this hyperbolic
component.

Next we consider the possibility of J2 being disconnected, but f not satisfying the hy-
potheses of our Theorem 1.3.

Question 6.2. Is there a polynomial skew product f with J2 disconnected, but all Jz’s
connected for all z ∈ C, such that H1(U(f)) is trivial? More generally, is there any en-
domorphism of P2 with J2 disconnected, but with all Fatou components having trivial
homology?

By [25, Proposition 6.6], in order for f to satisfy the hypotheses of this question, Jp

would have to be disconnected. However, a simple product like (z,w) 7→ (z2−100, w2) does
not suffice; note for this map, the basin of attraction of [1 : 0 : 0], hence the Fatou set,
has nontrivial homology. Not many examples of non-product polynomial skew products are
understood, and the current list of understood examples contains no maps which satisfy the
hypotheses of this question.

6.2. A quadratic family of polynomial skew products. We now consider the family
of examples fa(z,w) = (z2, w2 + az), which are skew products over p(z) = z2.

The geometry and dynamics in Jp × C were explored in [11]. For example, there it is
established that:

(1) [11, Theorem 5.1]: fa is Axiom A if and only if ga(w) := w2 + a is hyperbolic; and
(2) [11, Lemma 5.5]: J2 can be described geometrically in the following manner: Jeit is

a rotation of angle t/2 of J{z=1}. That is, start with J(ga) in the fiber J{z=1}, then

as the base point z = eit moves around the unit circle Jp = S1, the corresponding
Jz’s are rotations of J(ga) of angle t/2, hence the Jz’s complete a half turn as z
moves once around the base circle.

Due to the structure of J2, the difference between fa and the product ha(z,w) = (z2, w2+
a) is one “twist” in J2. In [11] it is shown that fa and ha are in the same hyperbolic
component if and only if a is in the main cardiod of the Mandelbrot set, M.



18 S. Hruska and R. Roeder

Note that the extension of fa to P2, given by fa([Z : W : T ]) = [Z2,W 2 + aZT : T 2], is
symmetric under the involution S([Z : W : T ]) = [T : W : Z].

Theorem 6.3. The Fatou set of fa is the union of the basins of attraction of three super-
attracting fixed points: [0 : 0 : 1], [0 : 1 : 0], and [1 : 0 : 0], each of which is path-connected.

Moreover:

• If a 6∈ M, then W s([0 : 1 : 0]) has infinitely generated first homology.
• If a ∈ M, then each of the three basins of attraction W s([0 : 1 : 0]),W s([0 : 0 : 1])

and W s([1 : 0 : 0]) is homeomorphic to an open ball.

Proof. For any a, the fiberwise Julia set J0 is the unit circle |z| = 1. Proposition 4.2 from [32]
can be modified to show that there is a local super-stable manifold W s

loc(J0) that is obtained
as the image of a holomorphic motion of J0 that is parameterized over Dǫ = {|z| < ǫ}, for
ǫ > 0 sufficiently small. The motion of (0, w) ∈ J0 is precisely the connected component of
local super-stable manifold of (0, w) that contains (0, w), which we will call the superstable
leaf of w and denote by W s

loc(w). By construction, fa will map the superstable leaf of (0, w)
into the superstable leaf of (0, w2) = fa(0, w). Moreover, the proof of Proposition 4.4 from
[32] can also be adapted to show that W s

loc(J0) is the zero locus of a pluri-harmonic (hence
real-analytic) function.

Pulling back W s
loc(J0) under iterates of fa, we obtain a global separatrix W s(J0) over the

entire unit disc D = {|z| = 1}. Note that W s(J0) may not be a manifold, since ramification
may occur at points where it intersects the critical locus of fa. For |z| < 1, Jz is the
intersection ofW s(J0) with {z}×C and that Kz is the intersection ofW s([0 : 0 : 1])∪W s(J0)
with {z} × C. Thus, any point (z,w) with |z| < 1 is in W s([0 : 0 : 1]) ∪W s(J0) ∪W s([0 :
1 : 0]).

Under the symmetry S, each of the above statements about the super-stable manifold
of J0 corresponds immediately to a statement about the unit circle JΠ = {|Z/W | = 1}
in the line at infinity Π = {T = 0}. Moreover, any point in P2 with |T | < |Z| is in
W s([1 : 0 : 0]) ∪W s(JΠ) ∪W s([0 : 1 : 0]). Therefore, the Fatou set of fa is the union of
basins of attraction for three superattracting fixed points [1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1].
Since each of these fixed points is totally invariant, Proposition 5.2 gives that each of their
basins of attraction is path connected.

The vertical Julia J1 set over the fixed fiber z = 1 is precisely the Julia set of w 7→ w2 +a,
which is connected if and only if a ∈ M. In particular, if a 6∈ M, it follows from Theorem
1.3 that W s([0 : 1 : 0]) has infinitely generated first homology.

If a ∈ M, then, for each z ∈ Jp, Jz is a rotation of the connected set J1 and Theorem 1.3
gives that W s([0 : 1 : 0]) is homeomorphic to an open ball. We will now use Slodkowski’s
Theorem on holomorphic motions [35] (see also [23, Section 5.2]) to show that W s([0 : 0 : 1])
and W s([1 : 0 : 0]) = S(W s([0 : 0 : 1])) are homeomorphic to the open bidisc.

We will extend (in the parameter z) the holomorphic motion whose image is W s
loc(J0) to

a holomorphic motion of J0 parameterized by z ∈ D, having the entire separatrix W s(J0)
as its image. Then, by Slodkowski’s Theorem, this holomorphic motion extends (in the
fiber w) from J0 to a holomorphic motion of the entire Riemann sphere P1 that is also
parameterized by z ∈ D. Consequently, W s([0 : 0 : 1]) will be the image of a holomorphic
motion of the open disc {z = 0, |w| < 1}, parameterized by z ∈ D.
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Since a ∈ M, it also follows from [25, Proposition 6.4] that for each z ∈ C the fiber-wise
critical points

Cz := {w ∈ C : q′z(w) = 0}
are in Kz. We now check that they are disjoint from W s(J0).

The union of these fiber-wise critical points is just the horizontal line w = 0 that stays on
one side of W s(J0), possibly touching at many points. Note, however that they are disjoint
at z = 0. Consider the point z0 (with |z0| < 1) of smallest modulus where w = 0 and
W s(J0) touch. Then, there is a neighborhood of U of z0 in C2 in which W s(J0) is given
by the zero set of a PSH function Ψ. Changing the sign of Ψ (if necessary) we can assume
that Ψ ≤ 0 for points in Kz ∩ U . The restriction ψ(z) = Ψ|w=0 is a non-positive harmonic
function in a neighborhood of z0 having ψ(z0) = 0, but ψ(z) < 0 for z with |z| < |z0|. This
violates the maximum principle. Therefore, the fiber-wise critical points Cz are disjoint
from W s(J0) for every z.

Suppose that D ⊂W s(J0) is the graph of a holomorphic function ν(z) defined on {|z| <
r}, for some 0 < r < 1. Then, since W s(J0) is disjoint from the horizontal critical locus
w = 0, the Implicit Function Theorem gives that f−1

a (D) is the union of two discs through
the pre-images of ν(0), each given as the graph of a holomorphic function over {|z| < √

r}.
Let (0, w) ∈ J0 with preimages (w1, 0) and (w2, 0). Since fa(W

s
loc(w1,2)) ⊂ W s

loc(w),
the two discs from f−1

a (W s
loc(w)) form extensions of W s

loc(w1) and W s
loc(w2), as graphs of

holomorphic functions of |z| < √
ǫ.

Therefore, by taking the preimages under fa, the family of local stable discs can be
extended, each as the graph of a holomorphic function over |z| < √

ǫ. Applied iteratively,
we can extend them as the graphs of holomorphic functions over discs |z| < r for any r < 1.
In the limit we obtain global stable curves W s(w0) through every w0 ∈ J0, each of which
is the graph if a holomorphic function of z ∈ D. Since the global stable curves of distinct
points in J0 are disjoint, their union gives W s(J0) as the image of a holomorphic motion of
J0 parameterized by z ∈ D. �

6.3. Postcritically Finite Holomorphic Endomorphisms. Until presenting the conjec-
ture of the previous subsection, this paper has been about endomorphisms with complicated
Fatou topology. The opposite extreme is that the Fatou topology may also be trivial in
many cases. We suspect one simple case in which Fatou topology is trivial is when the map
is postcritically finite (PCF).

Question 6.4. Does the Fatou set of a postcritically finite holomorphic endomorphism of
P2 always have trivial homology?

A starting point for investigation into this question could be to attempt to establish it
for the postcritically finite examples constructed by Sarah Koch [26, 27]. Heuristic evidence
supports that the homology is trivial for Koch’s maps. Her construction provides a class
of PCF endomorphisms, containing an infinite number of maps, including the previously
studied examples of [13] and [10].

6.4. Other holomorphic endomorphisms of Pk. As we have demonstrated in Sections 4
and 5, given some information about the geometry of the support of T , we can apply the
techniques of Sections 3 to study the Fatou set of a holomorphic endomorphism of P2. We
would like to be able to apply this theorem to other holomorphic endomorphisms of Pk.
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However, specific examples of holomorphic endomorphisms that are amenable to analytic
study are notoriously difficult to generate.

One family of endomorphisms which seem a potentially vast area of study are the Hénon-
like endomorphisms. Introduced by Hubbard and Papadapol in [21], and studied a bit
further by Fornæss and Sibony in [15], these are holomorphic endomorphisms arising from a
certain perturbation of the Hénon diffeomorphisms. The Hénon diffeomorphisms have been
deeply studied (e.g., by Bedford Lyubich, and Smillie, [2, 4], Bedford and Smillie [5, 6],
Hubbard and Oberste-Vorth [19, 20], and Fornæss and Sibony [12]). A natural question
which is thus far quite wide open is: how does the dynamics of a Hénon diffeomorphism
relate to the dynamics of the perturbed Hénon endomorphism? Computer evidence suggests
the dynamics of Hénon-like endomorphisms is rich and varied.

Specifically concerning the topology of the Fatou set, the main result of [5] is that connec-
tivity of the Julia set is determined by connectivity of a slice Julia set in a certain unstable
manifold. We ask whether this result would have implications for the related Hénon en-
domorphism, which would allow us to use linking numbers to establish some analog of
Theorem 1.3 for Hénon endomorphisms.
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