EXAMPLES OF RATIONAL MAPS OF \mathbb{CP}^2 WITH EQUAL DYNAMICAL DEGREES AND NO INVARIANT FOLIATION

SCOTT R. KASCHNER, RODRIGO A. PÉREZ, AND ROLAND K. W. ROEDER

Abstract. We present simple examples of rational maps of the complex projective plane with equal first and second dynamical degrees and no invariant foliation.

1. Introduction

A meromorphic map $\phi : X \dasharrow X$ of a compact Kähler manifold X induces a well-defined pullback action $\varphi^* : H^{p,p}(X) \to H^{p,p}(X)$ for each $1 \leq p \leq \dim(X)$. The p-th dynamical degree

$$\lambda_p(\phi) := \lim_{n \to \infty} \|\varphi^n \circ \lambda_p : H^{p,p}(X) \to H^{p,p}(X)\|^{1/n}$$

(1)

describes the asymptotic growth rate of the action of iterates of φ on $H^{p,p}(X)$. Originally, the dynamical degrees were introduced by Friedland [23] and later by Russakovskii and Shiffman [34] and shown to be invariant under birational conjugacy by Dinh and Sibony [19]. Note that dynamical degrees were originally defined with the limit in (1) replaced by limsup. However, it was shown in [19, 18] that the limit always exists.

One says that φ is cohomologically hyperbolic if one of the dynamical degrees is strictly larger than all of the others. In this case, there is a conjecture [25, 27] that describes the ergodic properties of φ. This conjecture has been proved in several particular sub-cases [26, 14, 16].

What happens in the non-cohomologically hyperbolic case? If a meromorphic map preserves a fibration, then there are nice formulae relating the dynamical degrees of the map [15, 17]. This is the case in the following two examples:

a) It was shown in [13] that bimeromorphic maps of surfaces that are not cohomologically hyperbolic ($\lambda_1(\varphi) = \lambda_2(\varphi) = 1$) always preserve an invariant fibration.

b) Meromorphic maps that are not cohomologically hyperbolic arise naturally when studying the spectral theory of operators on self-similar spaces [35, 2, 24, 3]. All the examples studied in that context preserve an invariant fibration. In several cases, this fibration made it significantly easier to compute the limiting spectrum of the action.

Based on this evidence, Guedj asked in [27, p. 103] whether every non-cohomologically hyperbolic map preserves a fibration.

We will prove:

Theorem 1.1. The rational map $\varphi : \mathbb{CP}^2 \dasharrow \mathbb{CP}^2$ given by

(2) $\varphi[X : Y : Z] = [-Y^2 : X(X - Z) : -(X + Z)(X - Z)]$

is not cohomologically hyperbolic ($\lambda_1(\varphi) = \lambda_2(\varphi) = 2$), and no iterate of φ preserves a singular holomorphic foliation. Moreover, for a Baire generic set of automorphisms $A \in \text{PGL}(3, \mathbb{C})$, the composition $A \circ \varphi^4$ has the same properties.

Since preservation of a fibration is a stronger condition than preservation of a singular foliation, φ provides an answer to the question posed by Guedj.

After reading a preliminary version of this paper, Charles Favre asked if the same behavior can be found for a polynomial map of \mathbb{C}^2. In [21, §7.2], there is a list of seven types of non-cohomologically hyperbolic polynomial mappings. Our method of proof does not apply in most of these examples for trivial reasons, but we found a map of type (3) for which the same result holds:
Theorem 1.2. The polynomial map
\[\psi(x, y) := (x(x - y) + 2, (x + y)(x - y) + 1) \]
extends as a rational map \(\psi : \mathbb{CP}^2 \to \mathbb{CP}^2 \) that is not cohomologically hyperbolic \((\lambda_1(\psi) = \lambda_2(\psi) = 2) \), and no iterate of \(\psi \) preserves a singular holomorphic foliation on \(\mathbb{CP}^2 \).

Non-cohomologically hyperbolic maps of 3-dimensional manifolds \(X \) arise naturally as certain pseudo-automorphisms that are "reversible" on \(H^{1,1}(X) \) [6, 5, 32]. For these mappings it follows from Poincaré duality that \(\lambda_1(\varphi) = \lambda_2(\varphi) \). Recently, Bedford, Cantat, and Kim [4] have found a reversible pseudo-automorphism of an iterated blow-up of \(\mathbb{P}^3 \) which does not preserve any invariant foliation. It also answers the question posed by Guedj.

Many authors have studied meromorphic (and rational) maps that preserve foliations and algebraic webs, including [22, 8, 31, 11, 12, 7, 13]. Since the proof of Theorem 1.1 is self-contained and provides insight on the mechanism that prevents \(\varphi \) from preserving a foliation, we will provide a direct proof rather than appealing to results from these previous papers.

Let us give a brief idea of the proof of Theorem 1.1. The fourth iterate \(\varphi^4 \) has an indeterminate point \(p \) that is blown-up by \(\varphi^3 \) to a singular curve \(C \). Any foliation \(F \) must be either generically transverse to \(C \) or have \(C \) as a leaf. This allows us to show that \((\varphi^4)^* F \) must be singular at either \(p \) or at some preimage \(r \) of the singular point. Both of these points have infinite \(\varphi^4 \) pre-orbits, at each point of which \(\varphi^4 \) is a finite map. This generates a sequence of distinct points \(\{a_n\}_{n=0}^\infty \) at such that \((\varphi^{4n})^* F \) is singular at \(a_{-n} \). If \((\varphi^4)^* F = F \) for some \(t \) this implies that \(F \) is singular at infinitely many points, providing a contradiction. The same method of proof applies for the polynomial map in Theorem 1.2.

Question. Our proof of Theorem 1.2 relies on the compactness of \(\mathbb{CP}^2 \). Does \(\psi \) preserve a foliation on \(\mathbb{C}^2 \)?

If the foliation is algebraic, then it extends to a foliation of \(\mathbb{P}^2 \), and the answer follows from Theorem 1.2. However, if the foliation does not extend because it has an infinite set of singularities in \(\mathbb{C}^2 \) that accumulate to the line at infinity, then we do not yet know how to address the situation.

It would also be interesting to place the maps \(\varphi, \psi \) in the context of the conjecture from [25]:

Question. Do these maps have topological entropy \(\log 2 \)? Can one find a (unique) measure of maximal entropy? As \(n \to \infty \), what is the asymptotic behavior of the periodic points of period \(n \), and are the periodic points predominantly saddle-type, repelling, or degenerate?

In §2 we provide background on the transformation of foliations and fibrations by rational maps. In §3 we describe some basic properties of \(\varphi \) and we prove that \(\lambda_1(\varphi) = 2 = \lambda_2(\varphi) \), showing that \(\varphi \) is not cohomologically hyperbolic. In §4 we prove that no iterate of \(\varphi \) preserves a foliation, and conclude the section with a summary of the properties of \(\varphi \) that make the proof of Theorem 1.1 work. In §5 we prove Theorem 1.2 by computing that \(\lambda_1(\psi) = \lambda_2(\psi) \) and verifying that \(\psi \) has the properties listed in §4. The last section, §6, deals with the case of generic rotations of \(\varphi \), completing the proof of Theorem 1.1.

Acknowledgements. — We have benefited greatly from discussions with Eric Bedford, Serge Cantat, Laura DeMarco, Jeffrey Diller, Tien-Cuong Dinh, and Charles Favre. This work was supported in part by the National Science Foundation grants DGE-0742475 (to S.R.K), DMS-1102597 (to R.K.W.R.), DMS-1348589 (to R.K.W.R.), and IUPUI startup funds (to R.A.P. and R.K.W.R.).

2. Background

In this section we will present some background about singular holomorphic foliations on complex surfaces and their pullback under rational maps. While these results are well-known to experts, we include them here to make this paper self-contained. More details can be found in [1, 7, 9, 22, 29].

The standard holomorphic foliation on \(\mathbb{D}^2 \) is the representation of the bidisk \(\mathbb{D}^2 \) as the disjoint union of complex one-dimensional disks
\[\mathbb{D}^2 = \bigsqcup_{|y| < 1} \{|x| < 1\} \times \{y\}. \]

Let \(X \) be a (potentially non-compact) complex surface. A holomorphic foliation \(F \) on \(X \) is the partition
\[X = \bigsqcup_{\alpha} L_{\alpha}. \]
of X into the disjoint union of connected subsets L_{α}, which is locally biholomorphically equivalent to the standard holomorphic foliation on \mathbb{D}^2. Each L_{α} is a Riemann surface called a leaf of \mathcal{F}.

A singular holomorphic foliation on X is a foliation \mathcal{F} on $X \setminus P$, where P is a discrete set of points through which \mathcal{F} does not extend. The points of P are called the singular points of \mathcal{F}. We will abuse notation and denote the corresponding singular foliation by \mathcal{F}, as well.

It is easy to write \mathcal{F} as the integral curves of some holomorphic vector field in a neighborhood of any $x \in X \setminus P$. This can also be done in a neighborhood of any singular point:

Theorem 2.1 (Ilyashenko [28] and [29, Thm. 2.22]). In a neighborhood of each singular point $p \in P$, \mathcal{F} is generated as the integral curves of some holomorphic vector field.

Remark. An alternate proof of this result using sheaf theory and Hartog’s theorem can be found in [30].

For the remainder of the article we will use the word “foliation” to mean singular holomorphic foliation. Theorem 2.1 allows for any foliation $\{\phi_i\}$ on a surface X to be described in the following two equivalent ways:

(i) By an open cover $\{U_i\}$ of X and a system of holomorphic vector fields v_i on U_i with isolated zeros that satisfy the compatibility condition that $v_i = g_{ij}v_j$ for some non-vanishing holomorphic functions

$$g_{ij} : U_i \cap U_j \rightarrow \mathbb{C}.$$

(ii) By an open cover $\{U_i\}$ of X and a system of holomorphic one-forms ω_i on U_i with isolated zeros that satisfy the compatibility condition that $\omega_i = g_{ij}\omega_j$ for some non-vanishing holomorphic functions

$$g_{ij} : U_i \cap U_j \rightarrow \mathbb{C}.$$

If $\{(U_i, v_i)\}$ satisfies the compatibility condition in (i) we will call it a compatible system of vector fields, and if $\{(U_i, \omega_i)\}$ satisfies the compatibility condition in (ii) we will call it a compatible system of one-forms. Within a given U_i the tangent direction to a leaf is described by either v_i or the kernel of ω_i. The zeros of v_i or ω_i, correspond to the singular points of \mathcal{F}.

Lemma 2.2. Suppose \mathcal{F} and \mathcal{G} are foliations on a surface X that are equal outside of some analytic curve C. Then, $\mathcal{F} = \mathcal{G}$.

Proof. It suffices to prove the statement locally, so we can suppose that X is an open subset of \mathbb{C}^2. The tangent lines to leaves of \mathcal{F} define a meromorphic function $f : X \rightarrow \mathbb{P}^1$, whose indeterminate points are precisely the singular points P of \mathcal{F}. Similarly, \mathcal{G} defines a meromorphic function $g : X \rightarrow \mathbb{P}^1$, whose indeterminate points are precisely the singular points Q of \mathcal{G}. Both f and g are holomorphic on $X \setminus (P \cup Q)$ and equal on the connected set $X \setminus (P \cup Q \cup C)$. Thus, by uniqueness properties of analytic functions they are equal on $X \setminus (P \cup Q)$. Moreover, $P = Q$, since otherwise, one of the functions would define an extension of the other function through a point of its indeterminacy. \square

Let $\varphi : X \rightarrow Y$ be a dominant holomorphic map between two surfaces and let \mathcal{F} be a foliation on Y given by $\{(U_i, \omega_i)\}$. The pullback $\varphi^* \mathcal{F}$ is defined by $\{(\varphi^{-1}(U_i), \hat{\omega}_i)\}$ where each form $\hat{\omega}_i$ is obtained by rescaling ω_i, i.e., dividing it by a suitable holomorphic function in order to eliminate any non-isolated zeros.

As an illustration, consider $\varphi : \mathbb{C}^2 \rightarrow \mathbb{C}^2$ given by

$$\varphi(x_1, x_2) = (x_1^2, x_2) \quad \text{and} \quad \omega = y_2 dx_1 - y_1 dx_2.$$

Then, $\varphi^* \omega = 2x_1x_2dx_1 - x_2^2dx_2$ so that $\hat{\omega} = 2x_2dx_1 - x_1dx_2$.

One can easily have a singular foliation \mathcal{F} whose pullback under a holomorphic map is a non-singular foliation. For example, the radial foliation, given by the choice of ω in (4) pulls back under the blow-down $(x_1, x_2) \mapsto (x_1, x_1x_2)$ to the horizontal foliation given by $\hat{\omega} = dx_2$. This is impossible if the map is finite:

Lemma 2.3. Let $\varphi : X \rightarrow Y$ be a dominant holomorphic map between complex surfaces that is finite at $p \in X$ and let \mathcal{F} be a foliation on Y. If $\varphi(p)$ is a singular point for \mathcal{F} then p is a singular point for $\varphi^*(\mathcal{F})$.

Proof. Suppose that $\varphi^* \mathcal{F}$ is non-singular at p. Then, we can choose local coordinates (x_1, x_2) centered at p so that $\varphi^* \mathcal{F}$ is given by $\hat{\omega} = dx_1$.

Let (y_1, y_2) be local coordinates centered at $\varphi(p)$. In these coordinates, we have $\varphi : (\mathbb{C}, (0, 0)) \rightarrow (\mathbb{C}, (0, 0))$ where $\varphi(x_1, x_2) = (\varphi_1(x_1, x_2), \varphi_2(x_1, x_2))$. Suppose \mathcal{F} is given by

$$\omega = a(y_1, y_2)dy_1 + b(y_1, y_2)dy_2$$
with a and b having an isolated common zero at $(0,0)$.

Since $\hat{\omega} = dx_1$, the dx_2 coefficient of $\varphi^* \omega$ must vanish identically:

$$\begin{align*}
(a \circ \varphi)(x_1, x_2) \frac{\partial \varphi_1}{\partial x_2} + (b \circ \varphi)(x_1, x_2) \frac{\partial \varphi_2}{\partial x_2} &\equiv 0.
\end{align*}$$

(5)

We will show that this is impossible.

Since φ is dominant, neither $(a \circ \varphi)$ nor $(b \circ \varphi)$ can be identically zero. Thus, $\frac{\partial \varphi_1}{\partial x_2} \equiv 0$ if and only if $\frac{\partial \varphi_2}{\partial x_2} \equiv 0$, and hence, neither can vanish identically since φ is dominant. Moreover, since φ is finite, $(a \circ \varphi)$ and $(b \circ \varphi)$ have an isolated common zero at $(x_1, x_2) = (0,0)$. This implies that $\frac{\partial \varphi_1}{\partial x_2}$ vanishes along the same curves as $b \circ \varphi$ with at least the same multiplicity (and similarly for $\frac{\partial \varphi_2}{\partial x_2}$ along the same curves as $a \circ \varphi$).

Therefore, if $\text{mult}_q(f)$ denotes the order of vanishing of a holomorphic function f at point q, we have:

$$\text{mult}_{(0,0)} \left(\frac{\partial \varphi_1}{\partial x_2} \right) \geq \text{mult}_{(0,0)} (b \circ \varphi) \geq \min \{ \text{mult}_{(0,0)}(\varphi_1), \text{mult}_{(0,0)}(\varphi_2) \},$$

(6)

and a similar inequality holds for $\text{mult}_{(0,0)} \left(\frac{\partial \varphi_2}{\partial x_2} \right)$.

Note that φ_1 and φ_2 do not both vanish on $\{x_1 = 0\}$ because φ does not collapse power curves. Therefore, at least one of φ_1 and φ_2 has a monomial consisting of a positive power of x_2 in its power series. Let $\ell \geq 1$ be the minimal exponent of an x_2^k monomial in either series, and without loss of generality assume it is present in the power series of φ_1.

Let $k > \ell$ and consider $\psi: (\mathbb{C}^2, (0,0)) \rightarrow (\mathbb{C}^2, (0,0))$ given by

$$\psi(x_1, x_2) := \varphi(x_1^k, x_2).$$

Since the vertical foliation given by $dx_1 = 0$ is preserved under $(x_1, x_2) \mapsto (x_1^k, x_2)$, we also have that $\psi^* \mathcal{F}$ is the vertical foliation. Moreover, since ψ is a composition of finite, dominant maps, (6) holds for ψ. On the other hand, k was chosen so that

$$\min \{ \text{mult}_{(0,0)}(\psi_1), \text{mult}_{(0,0)}(\psi_2) \} = \text{mult}_{(0,0)}(\psi_1) = \ell,$$

with x_2^ℓ the only term of degree ℓ in the expansion for ψ_1. In particular,

$$\text{mult}_{(0,0)} \left(\frac{\partial \psi_1}{\partial x_2} \right) = \ell - 1 < \ell = \text{mult}_{(0,0)}(\psi_1),$$

which contradicts that (6) applies to ψ.

For the remainder of the paper, we will restrict our attention to complex projective algebraic surfaces, so that we can discuss rational maps. We will refer to them simply as “surfaces”. Let us make the convention that all rational maps are dominant, meaning that the image is not contained within a proper subvariety of the codomain.

Let $\varphi: X \dashrightarrow Y$ be a rational map of surfaces and let p be a point from the indeterminacy set \mathcal{I}_φ. A sequence of point blow-ups $\pi: \tilde{X} \rightarrow X$ resolves the indeterminacy at p if φ lifts to a rational map $\tilde{\varphi}: \tilde{X} \dashrightarrow X$ which is holomorphic in a open neighborhood of $\pi^{-1}(p)$ and makes the following diagram commute

$$\begin{align*}
\tilde{X} &\xrightarrow{\tilde{\varphi}} Y, \\
\pi \quad \circlearrowright
\end{align*}$$

(7)

wherever $\tilde{\varphi}$ and $\varphi \circ \pi$ are both defined.

It is a well-known fact that one can do a sequence of point blow-ups $\pi: \tilde{X} \rightarrow X$ over \mathcal{I}_φ so that φ lifts to a holomorphic map $\tilde{\varphi}: \tilde{X} \rightarrow X$ resolving all of the indeterminate points of \mathcal{I}_φ. See, for example, [36, Ch. IV, §3.3].

Definition 1. Let $\varphi: X \dashrightarrow Y$ be a dominant rational map and let \mathcal{F} be a foliation on Y. The pullback of \mathcal{F} under φ is defined by $\varphi^* \mathcal{F} := \pi_* \tilde{\varphi}^* \mathcal{F}$, where $\pi: \tilde{X} \rightarrow X$ is a sequence of blow-ups over \mathcal{I}_φ and $\tilde{\varphi}: \tilde{X} \rightarrow X$ is a holomorphic map resolving all of the indeterminacy of φ.

Lemma 2.7. Let $\rho : X \rightarrow S$ be a fibration inducing a foliation \mathcal{F} on X. A rational map $\varphi : X \rightarrow X$ preserves \mathcal{F} if and only if ρ semi-conjugates φ to a holomorphic map of S:

\begin{equation}
X \xrightarrow{\varphi} X
\end{equation}
Proof. Suppose that ρ semi-conjugates φ to a holomorphic map $\eta : S \to S$. We will show that $\varphi^*F = F$. By Lemma 2.2, it suffices to prove equality in the complement of a finite set of curves and points.

If $\{(U_i, \psi_i)\}$ is any system of coordinates on S, then F is defined on $X \setminus I_\rho$ by the compatible system of one-forms $\{(\rho^{-1}(U_i), d(\psi_i \circ \rho))\}$. For any $x \in X \setminus (\rho^{-1}(\text{crit}(\eta)) \cup \varphi^{-1}I_\rho \cup I_\rho \cup I_\rho)$ we can express F by $d(\psi_i \circ \eta \circ \rho)$, where ψ_i is some chart defined in the neighborhood of $\eta \circ \rho(x)$, since then $\psi_i \circ \eta$ serves as a chart in the neighborhood of $\rho(x)$. Meanwhile, commutativity of Diagram (8) implies that in a neighborhood of x we have

$$\varphi^*d(\psi_1 \circ \rho) = d(\psi_1 \circ \rho \circ \varphi) = d(\psi_1 \circ \eta \circ \rho).$$

Thus, F and φ^*F agree in a neighborhood of x.

Now suppose that $\varphi : X \to X$ preserves the foliation F. It is possible that φ collapses $\rho^{-1}(S_0)$ into I_ρ for some finite set $S_0 \subset S$. For any $s \in S \setminus S_0$ we define $\eta(s) = \rho(\varphi(x))$ where x is any element of $\rho^{-1}(s) \setminus (I_\rho \cup \varphi^{-1}(I_\rho))$. Since the fibers of ρ are connected, φ maps fibers to fibers. Therefore, this results in a well-defined function $\eta : S \setminus S_0 \to S$ which makes (8) commute wherever $\eta \circ \rho$ and $\rho \circ \varphi$ are both defined.

For any $s \in S$ there is a holomorphic disc D in X intersecting $\rho^{-1}(s)$ transversally, that is small enough so that $\rho : D \to \rho(D) \subset S$ is one-to-one. (We are again using that each fiber is connected.) Let $\chi : \rho(D) \to D$ be its inverse. Then, $\rho \circ \varphi \circ \chi : \rho(D) \to S$ is a meromorphic (hence holomorphic) function that agrees with η on $\rho(D) \setminus S_0$. We conclude that η extends as a holomorphic map $\eta : S \to S$. \hfill \square

Remark. Using Lemma 2.7, it follows immediately from Theorem 1.1 that no iterate of φ preserves a fibration.

3. Structure of φ

Recall that $\varphi : \mathbb{CP}^2 \to \mathbb{CP}^2$ is given by

3.1. Indeterminate and Postcritical Sets. Solving for the points where all three homogeneous coordinates of φ are zero, we find that the only indeterminate point of φ is

$$p := [1 : 0 : 1].$$

We have $|D\varphi| = -4Y(X - Z)^2$, so the curves

$$L_{\text{coll}} := \{X = Z\} \text{ and}$$

$$L_Y := \{Y = 0\}$$

are critical. Let $L_X := \{X = 0\}$, and observe that

$$L_{\text{coll}} \setminus \{p\} \longrightarrow [1 : 0 : 0] \longrightarrow [0 : 1 : -1] \longrightarrow [-1 : 0 : 1] \longrightarrow [0 : 1 : 0]$$

We will refer to the points in this four cycle as q_1, \ldots, q_4, respectively. Meanwhile,

$$L_Y \longrightarrow L_X$$

as illustrated in Figure 1.

3.2. Resonant Dynamical Degrees. Note that the orbit of the collapsed curve L_{coll} lies in the four cycle (12), which is disjoint from p. It follows that there is no curve V such that $\varphi(V) \subset I_\varphi$, so φ is algebraically stable by [37, Prop. 1.4.3]. Therefore, $\lambda_1(\varphi) = \deg_{\text{alg}}(\varphi) = 2$.

We will show in the proof of Lemma 3.2 that p can be resolved by two blow-ups with the image of the exceptional divisors being the line $\{Y = -2Z\}$. In particular, $[1 : 1 : -1]$ is neither a critical value nor in the image of the indeterminacy, so it is a generic point for φ. Its two preimages under φ are $[1 : \pm i : 0]$, so $\lambda_2(\varphi) = 2$. This establishes the following resonance of dynamical degrees:

Lemma 3.1. $\lambda_1(\varphi) = \lambda_2(\varphi) = 2$ so that φ is not cohomologically hyperbolic.
3.3. Fatou Set. Note also that \(\varphi^2 \) fixes both \(L_X \) and \(L_Y \), with each line transversally superattracting under \(\varphi^2 \). In the local coordinate \(z = Z/Y \), \(\varphi^2 \mid L_X \) is \(z \mapsto z^2 - 1 \), the well-known Basilica map, with period two superattracting cycle \(q_2 \leftrightarrow q_4 \). Similarly, in a suitable local coordinate, \(\varphi^2 \mid L_Y \) is also the Basilica map, with period two superattracting cycle \(q_1 \leftrightarrow q_1 \). Finally, \(\varphi \) (and hence \(\varphi^2 \)) has \(q_5 = [0 : 0 : 1] \) as a superattracting fixed point. We obtain five superattracting fixed points for \(\varphi^4 \). Their basins are shown in Figure 2.

Question. Is the Fatou set of \(\varphi \) the union of the basin of the superattracting 4-cycle \(q_1, \ldots, q_4 \) and the basin of the superattracting fixed point \(q_5 \)?
3.4. Resolving the indeterminate point \(p \). Proof of Theorem 1.1 relies on careful analysis of \(\varphi^4 \), the fourth iterate of \(\varphi \). The indeterminacy set of \(\varphi^4 \) is

\[
\mathcal{I}_{\varphi^4} = \{ p \} \cup \varphi^{-1}(\{ p \}) \cup \varphi^{-2}(\{ p \}) \cup \varphi^{-3}(\{ p \}) = \{ [1 : 0 : 1] \} \cup \{ [0 : \pm i : 1] \} \cup \{ [1 : 0 : -1 \pm i] \} \cup \{ [0 : i : \pm \sqrt{1 \pm i}] \}.
\]

However, we will only need to resolve the indeterminacy of \(\varphi^4 \) at \(p \).

Let \(\tilde{\mathbb{P}}^2 \) be the blow-up \(\mathbb{P}^2 \) at \(p \) with exceptional divisor \(E_1 \), and let \(\hat{L}_{\text{coll}} \) denote the proper transform of \(L_{\text{coll}} \). Then let \(\mathbb{P}^2 \) be the blow-up of \(\tilde{\mathbb{P}}^2 \) at the point \(E_1 \cap \hat{L}_{\text{coll}} \), resulting in a new exceptional divisor \(E_2 \). We will abuse notation by denoting the proper transform of \(E_1 \) in \(\tilde{\mathbb{P}}^2 \) also by \(E_1 \).

Lemma 3.2. The map \(\varphi^4 : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2 \) lifts to a rational map \(\hat{\varphi}^4 : \tilde{\mathbb{P}}^2 \dashrightarrow \mathbb{P}^2 \) that resolves the indeterminacy of \(\varphi^4 \) at \(p \). We have that \(\hat{\varphi}^4(E_1) = [1 : 0 : -9] =: s \) and that \(\hat{\varphi}^4(E_2) \) is an irreducible algebraic curve \(C_4 \) of degree 8 that is singular at \(s \).

Proof. We will first show that \(\varphi \) lifts to a rational map \(\tilde{\varphi} : \tilde{\mathbb{P}}^2 \dashrightarrow \mathbb{P}^2 \) that resolves the indeterminacy of \(\varphi \) at \(p \), satisfying \(\tilde{\varphi}(E_1) = [0 : 1 : -2] \) and \(\tilde{\varphi}(E_2) = \{ Z = -2Y \} \).

We will do calculations in several systems of local coordinates in a neighborhood of \(E_1 \) and \(E_2 \). A summary is shown in Figure 3. Consider the two systems of affine coordinates on \(\mathbb{P}^2 \) given by \((y, z) = (Y/X, Z/X) \) and \((x, \zeta) = (X/Y, Z/Y) \). Let \(w := z - 1 \), so \((y, w) \) are coordinates that place \(p \) locally at the origin. Writing \((x', \zeta') = \varphi(y, w) \), we have

\[
(x', \zeta') = \left(\frac{y^2}{w}, -w - 2 \right).
\]

There are two systems of coordinates in a neighborhood of \(E_1 \) within \(\tilde{\mathbb{P}}^2 \). They are \((y, \lambda) \), where \(w = \lambda y \), and \((w, \eta) \), where \(y = \eta w \). Then, \(\varphi \) lifts to a rational map \(\tilde{\varphi} : \tilde{\mathbb{P}}^2 \dashrightarrow \mathbb{P}^2 \) which is expressed in these coordinates by

\[
(x', \zeta') = \left(\frac{y}{\lambda}, -\lambda y - 2 \right) \quad \text{and} \quad (x', \zeta') = \left(\eta^2 w, -w - 2 \right).
\]

The exceptional divisor \(E_1 \) is given in the first set of coordinates by \(y = 0 \) and in the second set of coordinates by \(w = 0 \). It is clear from (13) that \(\tilde{\varphi} \) extends holomorphically to all points of \(E_1 \) other than \(\lambda = 0 \), sending each of these points to \((x, \zeta) = (0, -2) \).

In the \((y, w) \) coordinates, \(L_{\text{coll}} \) is given by \(w = 0 \). Thus, in the \((y, \lambda) \) coordinates, the proper transform \(\hat{L}_{\text{coll}} \) is given by \(\lambda = 0 \) so that \(E_1 \cap \hat{L}_{\text{coll}} \) is given by \((0, 0) \), the indeterminate point for \(\hat{\varphi} \) on \(E_1 \). We now blow this point up using two new systems of coordinates in a neighborhood of the new exceptional divisor \(E_2 \). They are \((y, \tau) \), where \(\lambda = \tau y \), and \((\lambda, \theta) \), where \(y = \theta \lambda \).
The map $\tilde{\varphi}$ lifts to a map φ, which can be expressed in local coordinates as

$$
(14) \quad (y', z') = (\tau, -\tau^2y^2 - 2\tau) \quad \text{and} \quad (x', \zeta') = (\theta, -\theta \lambda^2 - 2)
$$

This shows that $\tilde{\varphi} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is holomorphic in a neighborhood of E_2. Thus, it is holomorphic in a neighborhood of $E_1 \cup E_2$. Since E_2 is given in these systems of coordinates by $y = 0$ and $\lambda = 0$, respectively, one can see from (14) that $\tilde{\varphi}(E_2) = \{Z = -2Y\}$.

Notice that the line $C_1 := \{Z = -2Y\}$ passes through no points of $\mathcal{I}_{\varphi^3} = \{[1 : 0 : 1], [0 : \pm i : 1], [1 : 0 : -1 \pm i]\}$.

This implies that

$$
\tilde{\varphi}^4 := \varphi^3 \circ \tilde{\varphi} : \mathbb{P}^2 \dashrightarrow \mathbb{P}^2
$$

is holomorphic in a neighborhood of $E_1 \cup E_2$; i.e., that $\tilde{\varphi}^4$ resolves the indeterminacy of φ^4 at p. Since $\tilde{\varphi}(E_1) = [0 : 1 : -2]$ it is easy to check that $\tilde{\varphi}^4(E_1) = s = [1 : 0 : -9] := s$.

Meanwhile, $\tilde{\varphi}(E_2)$ is the projective line C_1. Its forward image under φ^3 is an algebraic curve $C_4 := \varphi^3(C_1)$ of degree $8 = \deg(\varphi^3)$. Since C_1 does not intersect \mathcal{I}_{φ^3}, C_4 is irreducible.

It remains to show that C_4 is singular at s. Notice that φ maps a neighborhood of $[0 : 1 : 3]$ biholomorphically to a neighborhood of s. Thus, it will be sufficient to show that $C_3 := \varphi^2(C_1)$ is singular at $[0 : 1 : 3]$.

See Figure 4 for plots of the real slices of C_3 and C_4.

Let us work in the (x, ζ) local coordinates. We have

$$
(x', \zeta') = \varphi^2(x, \zeta) = \left(\frac{x^2(x-\zeta)^2}{-1 + x^2 - \zeta^2}, -1 - x^2 + \zeta^2\right).
$$

If we parameterize C_1 by $t \mapsto (t, -2)$ and then compose with φ^2, we obtain the following parameterization of C_3:

$$
(15) \quad t \mapsto \left(\frac{t^2(t + 2)^2}{-5 + t^2}, 3 - t^2\right).
$$

To see that C_3 is singular at $(0, 3)$, it suffices to check that C_3 intersects any line through $(0, 3)$ with intersection number ≥ 2. Such a generic line is given by $Ax + B(\zeta - 3) = 0$. Substituting (15) into this equation, we obtain

$$
\frac{AT^2(t + 2)^2}{-5 + t^2} - Bt^2 = 0,
$$

for some A and B. This shows that C_3 intersects the line through $(0, 3)$ with intersection number ≥ 2.
which clearly has a double zero at \(t = 0 \), implying that the intersection number of \(C_3 \) with the line given by \(Ax + B(\zeta - 3) = 0 \) is at least two.

\[\Box \]

Remark. Applying \(\varphi \) to the parameterization of \(C_3 \) given in (15) one gets a parameterization of \(C_4 \). One can then use Gröbner bases [10, Ch. 3, §3] to generate the following implicit equation for \(C_4 \), which is expressed in the local coordinates \((y, u) = (y, z + 9)\) centered at \(s \):

\[
C_4 := \{ 624400 y^2 + 2099520 u y + 419904 u^2 - 1253880 y^3 - 2776032 u y^2 - 1463832 u^2 y - 291600 u^3 + 140049 u^4 + 743580 u y^3 + 976374 u^2 y^2 + 416988 u^3 y + 84321 u^4 \\
+ 24192 y^4 - 12004 u y^3 - 145656 u^2 y^3 - 159984 u^3 y^2 - 62280 u^4 y - 12996 u^5 \\
- 6912 y^6 - 17664 u y^5 - 7818 u^2 y^4 + 12000 u^3 y^3 + 13108 u^4 y^2 + 5152 u^5 y^2 \\
+ 1126 u^6 + 512 y^7 + 1792 u y^6 + 2176 u^2 y^5 + 820 u^3 y^4 - 400 u^4 y^3 - 496 u^5 y^2 \\
- 224 u^6 y - 52 u^7 + u^8 \} = \{(0, z) : z = 1, -1, 0, -2, -1 \pm i)\} \]

Since the lowest degree terms of (16) are of degree 2, this gives an alternative computational proof that \(C_4 \) is singular at \(s \).

4. **Proof of non-existence of invariant foliations for \(\varphi \)**

Implicitly throughout the proof we assume that \((\varphi^n)^*F = (\varphi^{m+n})^*F \) for \(m, n \geq 1 \), which follows from Lemma 2.4. Also note that the whole proof will take place in the coordinates \((y, z) = (Y/X, Z/X)\).

The \(\varphi \)-preimage of \(L_{coll} \) is the circle \(S := \{ y^2 + z^2 = 1 \} \) which intersects \(L_Y \) at the indeterminate point \(p = (0,1) \) and \(q_3 = (0, -1) \). It follows that \(\varphi^4 \) is a finite holomorphic map at each point of \(L_Y \) other than \(p \) and \(q_3 \), and consequently, \(\varphi^4 \) is a finite holomorphic map at every point of \(L_Y \) except at the finite set of points \(NF := \{ (0, z) : z = 1, -1, 0, -2, -1 \pm i \} \) consisting of \(p, q_3 \), and their \(\varphi^2 \)-preimages.

One can check that the point \(r := (0, -1 + \sqrt{2}i) \notin NF \) is a \(\varphi^4 \)-preimage of the singular point \(s \) of the blow-up curve \(C \). We will first show for any foliation \(F \) that \((\varphi^4)^*F \) is singular either at the indeterminate point \(p \) or at \(r \). By Lemma 2.5, either \(C \) is a leaf of \(F \) or generically transverse to \(F \). In the second case, Lemma 2.6 immediately implies that \((\varphi^4)^*F \) is singular at \(p \). On the other hand, if \(C \) is a leaf of \(F \), \(s \) must be a singular point for \(F \), since \(s \) is a singular point of \(C \) by Lemma 3.2. Since \(\varphi^4 \) is a finite holomorphic map at \(r \) and \(\varphi^4(r) = s \), by Lemma 2.3, \((\varphi^4)^*F \) is singular at \(r \) as well.

Note that neither \(p \) nor \(r \) are critical points of \(\varphi|L_Y \), so they are not exceptional points. One can check that any preorbis of \(p \) or \(r \) under \(\varphi^4 \) is disjoint from \(NF \). Let \(a_0 \) be the point \((p \text{ or } r) \) where \((\varphi^4)^*F \) is singular. If we denote some \(\varphi^4|L_Y \)-preorbis of \(a_0 \) by \(\{a_{-1}\}^{\infty}_{i=0} \), then for each \(i \), \((\varphi^{4(i+1)})^*F \) will be singular at \(a_{-i} \).

Now suppose the foliation \(F \) is preserved by \(\varphi^4 \) for any positive integer \(\ell \). Then \(F = (\varphi^{4\ell})^*F \) is singular at \(a_{-\ell k} \) for all \(k \geq 1 \). This implies \(F \) has infinitely many singular points, giving a contradiction. \(\Box \)

Observation: It was more convenient to explain the proof with a specific map; however the proof holds in greater generality. In fact, we have established

Proposition 4.1. Assume the map \(\eta : \mathbb{CP}^2 \to \mathbb{CP}^2 \) satisfies the following conditions:

1. There exists \(p \in I_N \) and some iterate \(k \) so that \(\eta^k \) blows up \(p \) to a singular curve \(C \).
2. \(p \) has an infinite preorbis along which \(\eta \) is a finite holomorphic map.
3. There is a singular point \(s \in C \) having an infinite preorbis along which \(\eta \) is a finite holomorphic map.

Then no iterate of \(\eta \) preserves a foliation.

Note that one can replace Conditions (2) and (3) with the equivalent condition that \(p \) and \(s \) have infinite \(\eta^k \)-preorbits along which \(\eta^k \) is a finite holomorphic map.

5. **Proof of non-existence of invariant foliations for \(\psi \)**

The extension of \(\psi(x, y) = (x(x - y) + 2, (x + y)(x - y) + 1) \) to \(\mathbb{CP}^2 \) is

\[
\psi|X : Y : Z| = [X(X - Y) + 2Z^2 : (X + Y)(X - Y) + Z^2 : Z^2].
\]

Let us first verify that \(\psi \) is algebraically stable. The indeterminate set consists of the point \(p := [1 : 1 : 0] \),
and the critical set is

\[\{X = Y\} \cup \{Z = 0\}. \]

One can check that \(L_{\text{coll}} := \{X = Y\} \) satisfies that \(\varphi(L_{\text{coll}} \setminus \{p\}) = [2 : 1 : 1] \) which is periodic of period 2:

\[[2 : 1 : 1] \leftrightarrow [4 : 4 : 1]. \]

The line \(L_{\infty} := \{Z = 0\} \) is not collapsed by \(\psi \); using the coordinate \(w = Y/X \), the restriction \(\psi | L_{\infty} \) is given by \(w \mapsto w + 1 \). Since no iterate of a collapsing line lands on the indeterminate point \(p \), it follows from [37, Prop.1.4.3] that \(\psi \) is algebraically stable; thus, \(\lambda_1(\psi) = 2 \).

Any point \((a, b) \in \mathbb{C}^2\) with \(2a - b - 3 \neq 0 \) has two preimages in \(\mathbb{C}^2 \) given by

\[(x, y) = \left(\frac{-2a + a - 1 - b}{\sqrt{2a - b - 3}}, \frac{a - 1 - b}{\sqrt{2a - b - 3}} \right). \]

Since generic points of \(\mathbb{C}^2 \) do not have a preimage on \(L_{\infty} \), \(\lambda_2(\psi) = 2 \); thus \(\psi \) is not cohomologically hyperbolic.

Proof of Theorem 1.2. It suffices to verify that \(\psi \) satisfies the conditions of Proposition 4.1.

A sequence of two blow-ups at \(p \) resolves the indeterminacy of \(\psi \). The first blow-up results in a lift \(\tilde{\psi} : \mathbb{CP}^2 \to \mathbb{CP}^2 \) with exceptional divisor \(E_1 \). The point \(q \in E_1 \) with coordinate \(\lambda := (Y - X)/Z = 0 \) is indeterminate for \(\tilde{\psi} \), and \(\tilde{\psi}(E_1 \setminus \{q\}) = [1 : 2 : 0] \). The second blow-up (at \(q \)) resolves the indeterminacy, and the lifted map \(\tilde{\psi} \) sends the new exceptional divisor \(E_2 \) to the line \(C_1 := \{2X - Y - 3Z = 0\} \). We omit the calculations as they are very similar to those in Lemma 3.2.

The indeterminacy set of \(\psi^3 \) is

\[\mathcal{I}_{\psi^3} = \mathcal{I}_\psi \cup \psi^{-1}(\mathcal{I}_\psi) \cup \psi^{-2}(\mathcal{I}_\psi) = \{[1 : 1 : 0]\} \cup \{[1 : 0 : 0]\} \cup \{[1 : -1 : 0]\}. \]

Since \(\mathcal{I}_{\psi^3} \) is disjoint from \(C_1 \), the map \(\tilde{\psi}^4 := \psi^3 \circ \tilde{\psi} \) resolves the indeterminacy of \(\psi^4 \) at \(p \). Moreover, \(\tilde{\psi}^4 \) blows up \(p \) to the curve

\[C_4 := \tilde{\psi}^4(E_2) = \tilde{\psi}^3(C_1). \]

We will now check that \(s = [4 : 4 : 1] \) is a singular point on \(C_4 \). Let us work in the affine coordinates \((x, y) = (X/Z, Y/Z)\). If we parameterize \(C_1 \) by \(t \mapsto (t, 2t - 3) \), then a parameterization of \(C_3 := \psi^2(C_1) \) is obtained by substituting into the expression for \(\psi^2 \):

\[t \mapsto (-2t^4 + 15t^3 - 33t^2 + 12t + 22, -8t^4 + 66t^3 - 187t^2 + 204t - 59). \]

One can see that \(C_3 \) is singular at \((2, 1)\) by using Gröbner bases to convert (19) into the following implicit equation for \(C_3 \)

\[
256u^4 - 256uv^3 + 96u^2v^2 - 16uv + v^4 - 5650u^3 + 6253u^2v
-2228uv^2 + 257v^3 + 10816u^2 - 10816uv + 2704v^2 = 0,
\]

which is expressed in local coordinates \((u, v)\) where \(x = u + 2, y = v + 1 \). Since the lowest order terms are of degree 2, the point \((x, y) = (2, 1)\) is singular for \(C_3 \). (This can also be shown using the parameterization of \(C_3 \), like in the proof of Lemma 3.2.)

One can check that \(D\psi \) is invertible at \((2, 1)\) so that \(C_4 = \psi(C_3) \) is singular at \(s = \psi(2, 1) = (4, 4) \). Therefore, Condition (1) from Proposition 4.1 holds.

Since the action of \(\psi \) on \(L_{\infty} \) is given by \(w \mapsto w + 1 \), and \(p \) is given in this coordinate by \(w = 1 \), we find that \(p \) has an infinite pre-orbit under \(\psi \). Moreover, these preimages are disjoint from \(p \) (and hence from the collapsing line \(L_{\text{coll}} \)), so Condition (2) of the proposition holds.

It remains to check Condition (3). Notice that \(\psi(L_{\text{coll}} \setminus \{p\}) = (2, 1) \in C_1 \). Therefore, it suffices to show that \((4, 4) \notin C_1 \) has an infinite pre-orbit in \(\mathbb{C}^2 \) consisting of points not on \(C_1 \). For any \((a, b) \notin C_1 \), the two preimages given by (18) cannot both be on \(C_1 \), since in that case

\[
\frac{-5 + 3a - b + 3\sqrt{2a - b - 3}}{\sqrt{2a - b - 3}} = 0, \text{ and} \frac{5 - 3a + b + 3\sqrt{2a - b - 3}}{\sqrt{2a - b - 3}} = 0.
\]
Summing these equations yields \(-6 = 0\), a contradiction. Therefore, any point of \(\mathbb{C}^2 \setminus C_1\) has an infinite pre-orbit disjoint from \(C_1\).

Since all three conditions of Proposition 4.1 hold, we conclude that no iterate of \(\psi\) preserves a foliation. \(\square\)

6. **Proof of non-existence of invariant foliations for generic rotations of \(\varphi^4\)**

Note that for any \(A \in \text{PGL}(3, \mathbb{C})\), we have \(\mathcal{I}_{\text{coll}} = \mathcal{I}_{\varphi^4}\). For any \(n \in \mathbb{Z}^+\), let

\[
\Omega^n_1 := \{ A \in \text{PGL}(3, \mathbb{C}) : (A \circ \varphi^4)^n(\text{coll}) \not\in \{p, r\} \},
\]

\[
\Omega^n_2 := \{ A \in \text{PGL}(3, \mathbb{C}) : p, q \not\in (A \circ \varphi^4)^n(\mathcal{I}_{\varphi^4}) \},
\]

\[
\Omega^n_3 := \{ A \in \text{PGL}(3, \mathbb{C}) : \text{for all } 0 \leq i \neq j \leq n, (A \circ \varphi^4)^{-1}(p) \cap (A \circ \varphi^4)^{-1}(p) = \emptyset \} \cap \{ A \in \text{PGL}(3, \mathbb{C}) : \text{for all } 0 \leq i \neq j \leq n, (A \circ \varphi^4)^{-1}(r) \cap (A \circ \varphi^4)^{-1}(r) = \emptyset \}.
\]

Here, \((\varphi^4)^n(\mathcal{I}_{\varphi^4})\) denotes the total transform of \(\mathcal{I}_{\varphi^4}\), i.e. \((\varphi^4)^n(\mathcal{I}_{\varphi^4}) = (\varphi^4)^{n-1}(C_1)\), where \(\varphi^4\) blows up \(\mathcal{I}_{\varphi^4}\) to \(C_1\).

Each of these sets is the complement of an algebraic set because the conditions

1. \((A \circ \varphi^4)^n\) collapses \(\text{coll}\) on \(p\) or in \(r\),
2. \(p, r \in (A \circ \varphi^4)^n(\mathcal{I}_{\varphi^4})\),
3. \((A \circ \varphi^4)^{-1}(p) \cap (A \circ \varphi^4)^{-1}(p) \neq \emptyset\), and
4. \((A \circ \varphi^4)^{-1}(r) \cap (A \circ \varphi^4)^{-1}(r) \neq \emptyset\)

are all algebraic. In order to conclude that \(\Omega^n_1 \cap \Omega^n_2 \cap \Omega^n_3\) is a dense open subset of \(\text{PGL}(3, \mathbb{C})\) we only need to show that this intersection is not empty. Notice that if \(A \in \Omega^n_2 \cap \Omega^n_3\) follows from our study of \(\varphi^4\). For even \(i, j\), Property 3 holds for \(A = \text{id}\) because \(p\) is in the basin of \(\infty\) for \(\varphi^4|\mathcal{L}_Y\). Similarly, for odd \(i, j\) by taking \(\varphi^4(p)\), which is in the basin of \(\infty\) for \(\varphi^4|\mathcal{L}_Y\).

By Baire’s Theorem the intersection \(\Omega^n := \bigcap_n \Omega^n_1 \cap \Omega^n_2 \cap \Omega^n_3\) is generic in \(\text{PGL}(3, \mathbb{C})\).

For \(A \in \Omega^\infty\), \(A \circ \varphi^4\) is algebraically stable, since \(A \not\in \Omega^n_2\) for any \(n\). Thus \(\lambda_1(A \circ \varphi^4) = 16\). Meanwhile, for any \(A \in \text{PGL}(3, \mathbb{C})\), \(\lambda_2(A \circ \varphi^4) = \lambda_2(\varphi^4) = 16\). Thus, for any \(A \in \Omega^\infty\), \(A \circ \varphi^4\) is non-cohomologically hyperbolic.

We will now verify that for \(A \in \Omega^\infty\) the composition \(A \circ \varphi^4\) satisfies the hypotheses of Proposition 4.1. Condition (1) follows with \(k = 1\) from Lemma 3.2 since \(\varphi^4\) blows-up \(p\) to \(C\), which is singular at \(s\). Thus, \(A \circ \varphi^4\) blows-up \(p\) to \(A(C)\), which is singular at \(A(s)\). Since \(A \in \Omega^n_1 \cup \Omega^n_2 \cup \Omega^n_3\) for any \(n\), the point \(p\) has an infinite pre-orbit under \(A \circ \varphi^4\) along which \(A \circ \varphi^4\) is finite. Thus, Condition (2) holds. Finally, since \(\varphi^4\) is finite at \(r\) with \(\varphi^4(r) = s\), the composition \(A \circ \varphi^4\) is finite at \(r\) and maps \(r\) to \(A(s)\). Condition (3) then follows from the fact that \(A \in \Omega^n_1 \cup \Omega^n_2 \cup \Omega^n_3\).

Since the hypotheses of Proposition 4.1 are satisfied, no iterate of \(A \circ \varphi^4\) preserves a foliation.

Observation: All the arguments above hold with \(\varphi\) substituting \(\varphi^4\), except for the verification of Condition (3), because it is not clear how to ensure that \((A \circ \varphi^4)^n(p)\) remains singular and has an infinite pre-orbit along which \(A \circ \varphi\) is finite. For the sake of simplicity we decided not to address this technicality, but we expect that for a generic rotation of \(\varphi\) the same result holds.

Question. (Ch. Favre) Let \(\eta : \mathbb{C}P^2 \rightarrow \mathbb{C}P^2\) be an algebraically stable map that is not cohomologically hyperbolic. Then generic rotations \(A \circ \eta\) will have the same dynamical degrees and hence also be non-cohomologically hyperbolic. Under what conditions on \(\eta\) will generic rotations of \(\eta\) not preserve a foliation?

References

