Parametric Curves

Curves described by Parametric Equations

Suppose we have two functions f and g such that $x = f(t)$ and $y = g(t)$. Each value of t determines a point (x, y) in the x-y plane. As t varies, the point $(x, y) = (f(t), g(t))$ traces out a curve C called a parametric curve. The equations $x = f(t)$ and $y = g(t)$ are called parametric equations for the curve C with t as parameter.

If t is time, then $(x, y) = (f(t), g(t))$ can be interpreted as the position of a particle in the x-y plane at time t.

For curve C with parametric equations $x = f(t)$ and $y = g(t)$, $a \leq t \leq b$, the point $(f(a), g(a))$ is called the initial point and the point $(f(b), g(b))$ is called the terminal point. We indicate by an arrowhead on the curve the direction in which the curve C is traced as t increases from a to b.

A trochoïd is generated by the motion of a point at a distance t from the center of a circle that has radius r, $0 < t \leq r$, as the circle rolls along a straight line. A cycloïd is a trochoïd with $t = r$, it is the curve generated by the motion of a point on a circle that rolls along a straight line. A hypocycloïd is generated by the motion of a point on a circle that rolls inside another circle. An epicycloïd is generated by the motion of a point on a circle that rolls outside another circle.

HW: p662 #3, 7, 11, 12, 19, 25