On isometries of Finsler manifolds

László Kozma (University of Debrecen, Hungary)

- Finsler metrics, examples
- isometries of Finsler manifolds
- the group of isometries
- characterizations of isometries with area and angle
- Finsler manifolds with many isometries
- Weinstein theorem for Finsler manifolds
The notion of a Finsler metric

Approach I: \(\forall p \in M \) \(L_p : T_p M \to R^+ \) norm

- \(L_p(u) \geq 0 \) \(= 0 \iff u = 0 \)
- \(L_p(\lambda(u)) = \lambda L_p(u) \) \(\lambda > 0 \) positively homogeneous
- \(L_p(u + v) \leq L_p(u) + L_p(v) \) convexity
- \(L^2 : TM \setminus \{0\} \to R^+ \) is of class \(C^2 \)
- \(L_p(-u) = L_p(u) \) symmetrical/ reversible

indicatrix: \(\mathcal{I}_p = \{ u \in T_p M \mid L_p(u) = 1 \} \)
Approach II: variational problem

\[\int_{a}^{b} L(x(t), \dot{x}(t))dt \rightarrow \text{Euler-Lagrange equations} \]

\[\uparrow \text{positively homogenous} \]

Riemannian case: \(L(x, \dot{x}) = \sqrt{g_{ij}(x)\dot{x}^{i}\dot{x}^{j}} \)

Finslerian case: \(g_{ij}(x, y) = \frac{1}{2} \frac{\partial^{2}L^{2}}{\partial y^{i}\partial y^{j}} \)

\(g(x, y) \): Riemannian metric in the Finsler vector bundle \(VTM \)

Approach III: \(d : M \times M \rightarrow R^{+} \) is a metric

\(v \in T_{p}M; c : [0, 1] \rightarrow M \) with \(c(0) = p, \dot{c}(0) = v \)

\[L_{p}(v) = \lim_{t \rightarrow 0} \frac{d(p, c(t))}{t} \]
Example 1: Funk metric

\[\Omega \subset \mathbb{R}^n \text{ strictly convex} \]

\[d(p, q) = \ln \frac{|z - p|}{|z - q|} \]

\[p + \frac{y}{L(y)} \in \partial \Omega \]

\[B^n = \Omega; \quad L(y) = \frac{\sqrt{|y|^2 - (|p|^2|y|^2 - (p, y)^2)} + (p, y)}{1 - |p|^2} \]

— projectively flat
— constant negative curvature \(-1/4\)
— non–reversible
— Randers metric

Example 2: Hilbert metric

\[\check{d}(p, q) = \frac{1}{2} (d(p, q) + d(q, p)) = \frac{1}{2} \ln \left(\frac{|z - p|}{|z - q|} : \frac{|v - p|}{|v - q|} \right) \]
Example 3: Katok’s example (1973), W. Ziller (1982)

S^2: standard Riemannian metric α

Φ_t: one parameter group of rotations leaving the north & south poles invariant

X: Killing vector field

β: Killing form

$$L_\varepsilon(x, y) = \alpha(x, y) + \varepsilon \beta(x, y)$$

Theorem: For any irrational ε a curve c is a closed geodesic of L_ε if and only if c is a closed geodesic of α and invariant with respect to Φ_t.

Properties:

– the length of the two closed geodesics: $\frac{2\pi}{1 + \varepsilon}$; $\frac{2\pi}{1 - \varepsilon}$

– L_ε is a Finsler metric $\iff |\varepsilon| < 1$
Isometries of Finsler manifolds

\((M, L)\) : Finsler manifold

d : the induced distance function, not necessarily reversible

The length of a curve in \((M, L)\) is given as usual:

\[\ell(c) = \int_0^1 L(\dot{c})\,dt. \]

The induced distance \(d\) between \(x, y \in M\) can be defined by taking the infimum of the length of all curves joining \(x\) to \(y\):

\[d(x, y) = \inf \{ \ell(c) \mid c(0) = x, c(1) = y \} \]
1. an isometry: a diffeomorphism \(\phi : M \rightarrow M \) of \(M \) onto itself which preserves \(L \):

\[
L(d\phi(u)) = L(u) \quad \forall u \in TM
\]

2. an isometry: a mapping \(\phi : M \rightarrow M \) of \(M \) onto itself which preserves the distance between each pair of points:

\[
d(\phi(x), \phi(x)) = d(x, y) \quad \forall x, y \in M
\]

the two definitions are equivalent.
Theorem. Let $x \in M$ and $B_x(r)$ be a tangent ball of $T_x(M)$ such that \exp_x is a C^1 diffeomorphism from $B_x(r)$ onto $B_x^+(r)$. For $A, B \in B_x(r)$, $A \neq B$, let $a = \exp_x A, b = \exp_x B$. Then

$$\frac{L(x, A - B)}{d(a, b)} \to 1$$

as $(A, B) \to (0, 0)$.

Theorem. Let $\| \cdot \|_1, \| \cdot \|_2$ be two Minkowski norms on R^n. Let ϕ be a mapping of R^n into itself such that $\|\phi(A) - \phi(B)\|_2 = \|A - B\|_1, \forall A, B \in R^n$. Then ϕ is a diffeomorphism.

Corollary. Let (M, L) be a Finsler space and ϕ be a distance-preserving mapping of M onto itself. Then ϕ is a diffeomorphism.

Theorem. [Deng, Hou, 2002] The group of isometries $I(M)$ is a Lie transformation group. The isotropy subgroup $I_x(M)$ is compact.
Area in Minkowski spaces

(\mathbb{R}^n, L): Minkowski space
$\mathcal{B} = \{ v \in \mathbb{R}^n : L(v) < 1 \}$: Minkowski ball

Minkowski measure of $D \subset \mathbb{R}^n$:

$$\|D\|_M = \frac{\pi \|D\|_E}{\|\mathcal{B}\|_E}$$

independent of $\| \cdot \|_E$
Angles in Finsler geometry

Finsler angle of Finsler vectors; \(U, V \in V_uTM \):

\[
\angle_F(U, V) = \arccos \frac{g_u(U, V)}{\sqrt{g_u(U, U)} \sqrt{g_u(V, V)}}
\]

Minkowski angle of tangent vectors, rays in the tangent spaces \(u, v \): non-parallel vectors in \(T_xM \);
\(\Sigma \): generated linear space by \(u, v \);
\(\mathcal{B}^2 = \Sigma \cap \mathcal{B} \); \(D = \text{conv}(u,v) \cap \mathcal{B}^2 \)

\[
\angle_M(u, v) = \epsilon 2\| D \|_M, \quad \epsilon = \pm 1
\]

Properties: additive, symmetric; the measure of straight angle is \(\pi \) iff \(L \) is absolutely homogeneous (reversible).
Observation. \(\phi : (M, L_1) \longrightarrow (\bar{M}, L_2) \) is an isometry if and only for indicatrices

\[d\phi(I_p) = \bar{I}_{\phi(p)} \quad \forall p \in M. \]

\[L_2(d\phi(u)) = L_2(L_1(u)d\phi(\frac{u}{L_1(u)})) = L_1(u)L_2(d\phi(\frac{u}{L_1(u)})) = L_1(u). \]

Theorem. [Tamássy, 2007)]
A diffeomorphism \(\phi : (M, L_1) \longrightarrow (\bar{M}, L_2) \) is an isometry if and only if \(d\phi \) preserves the 2-dimensional area and the Minkowski angle.

Proof. Necessity: \(d\phi \) is linear \(\Rightarrow \) preserves the ratio of areas :

\[\|d\phi(D)\|_{\bar{M}} = \frac{\pi\|d\phi(D)\|_E}{\|\bar{I}^2\|_E} = \frac{\pi\|D\|_E}{\|I^2\|_E} = \|D\|_M. \]
Sufficiency. Suppose: \(\phi : (M, L_1) \longrightarrow (\bar{M}, L_2) \) diffeomorphism; preserves area and angle. Let \(\hat{B}_p = (d\phi)^{-1}(B_{\phi(p)}) \).

If \(\hat{I}_p \neq I_p \), then there are two nearby rays \(u, v \) such that

\[
\text{conv} (u, v) \cap B_p \subset \text{conv} (u, v) \cap \hat{B}_p,
\]

however

\[
\|\text{conv} (u, v) \cap B_p\|_M^{\text{angle}} = \|\text{conv} (d\phi(u), d\phi(v)) \cap B_{\phi(p)}\|_{\bar{M}}^{\text{area}} = \|\text{conv} (u, v) \cap \hat{B}_p\|_M
\]

Remark: In this case the Finsler angle is preserved, too.

\[n \neq 4, \quad \dim I^F(M) > \frac{1}{2}n(n - 1) + 1 \implies (M, L) \text{ is Riemannian} \]

There exist non-Riemannian Finsler spaces with

\[\dim I^F(M) = \frac{1}{2}n(n - 1) + 1. \]
Study of all the non-Riemannian Finsler spaces having a group of motions of the largest order.

Theorem 1. If \((M, L)\) is a non-Riemannian Finsler space of dimension \(n > 4\) and its group of motions \(I(M)\) is of order \(n(n - 1)/2 + 1\), it must be of one of the following types:

1. \((M, L)\) is a symmetric Berwald space which is the non-Riemannian Cartesian product of Riemannian spaces \(U \) [resp. \(V\)], where \(U = R, S^{1}\) and \(V = R^{n-1}, S^{n-1}, H^{n-1}, P^{n-1}(R)\),

2. \((M, L)\) is a \(BLF^n\)-space.

Theorem 2. Every \(BLF^n\) space \((n \geq 2)\) is a non-Berwaldian Wagner space which is conformal to a Minkowski space.

Theorem 3:. A \(BLF^n\)-space \((n \geq 2)\) is projectively flat if and only if it is an \(HBLF^n\)-space, and all these spaces are of non-constant scalar curvature.
H^n: hyperbolic space

$G = \{ \text{isometries of } H^n \text{ leaving } S \text{ and } S^* \text{ invariantly} \}$

G^0_p isotropy group at $p \in H^n$

$r : (0, 2\pi) \rightarrow \mathbb{R}$

$(\varphi, r(\varphi))$ indicatrix of a Minkowski (non-Euclidean) norm

g^* Riemannian metric tensor of H^n

$\|X\| = \sqrt{g^*(X, X)}$

$L(X) = r(\arctan \frac{g^*(N, X)}{\|X - g^*(N, X) N\|}) \|X\|$
Alan Weinstein (1968):

Let \(f \) be a an isometry of a compact oriented Riemannian manifold \(M \). Suppose that \(M \) has positive sectional curvature and that \(f \) preserves the orientation of \(M \) if the dimension is even, and reverses if it is odd. Then \(f \) has a fixed point: \(f(p) = p \).

Weinstein’s Theorem for Finsler manifolds: (Kozma & Peter, 2006)

Let \(f \) be an isometry of a compact oriented positively homogeneous Finsler manifold \(M \) of dimension \(n \). If \(M \) has positive flag curvature and \(f \) preserves the orientation of \(M \) for \(n \) even and reverses the orientation of \(M \) for \(n \) odd, then \(f \) has a fixed point.
flag curvature:

\[K(y, V) = \frac{g_y(R(V, y)y, V)}{g_y(y, y)g_y(V, V) - g_y^2(y, V)} \]

second variation formula:

Consider now the variation of \(\sigma \) given by

\[\Sigma: (-\epsilon, \epsilon) \times [0, \ell] \to M \]

\[
\frac{d^2 \ell}{ds^2} \Sigma(0) = \int_0^\ell \left\{ g_{\dot{\sigma}}(\nabla_{\dot{\sigma}} U, \nabla_{\dot{\sigma}} U) - g_{\dot{\sigma}}(R_{\dot{\sigma}}(U), U) \right\} dt \\
+ g_{\dot{\sigma}(\ell)}(\kappa_\ell(0), \dot{\sigma}(\ell)) - g_{\dot{\sigma}(0)}(\kappa_0(0), \dot{\sigma}(0)) \\
+ T_{\dot{\sigma}(0)}(U(0)) - T_{\dot{\sigma}(\ell)}(U(\ell))
\]

where \(T = \dot{\sigma} \) and \(U \) are the tangential and transversal vector fields, resp; of the variation \(\Sigma \).
Proof:

Step 1:
Suppose that the isometry f has no fixed points: $f(x) \neq x$ for all $x \in M$.
Since the manifold M is compact, the function $h : M \to \mathbb{R}$, given by $h(x) = d(x, f(x))$ attains its minimum at a point $x \in M$: $h(x) > 0$.
The completeness of the manifold M implies that there exists a minimizing normalized geodesic $\sigma : [0, \ell]$ joining x and $f(x)$.
Show that the curves formed by σ and $f \circ \sigma$ form a geodesic.
Then $df_x(\sigma'(0))) = \sigma'(\ell))$.
Step 2:

Find a unit parallel vector field $E(t)$ which is $g_{\dot{\sigma}(t)}$-orthogonal complement of $\dot{\sigma}(t)$.
Then $df_x(E(0)) = E(\ell))$.

Step 3:

Construct a variation Σ of σ given by

$$\Sigma : (-\epsilon, \epsilon) \times [0, \ell] \to M$$

$$\Sigma(s, t) = \exp_{\sigma(t)}(sE(t)), \ s \in (-\epsilon, \epsilon), \ t \in [0, \ell].$$

Then

$$U(t) = \frac{\partial}{\partial s} \exp_{\sigma(t)}(sE(t))|_{s=0} = E(t),$$

so the transversal vector of the variation Σ is parallel transported along σ.
Step 4:

The second variation formula reduces to:

$$\frac{d^2 \ell \Sigma}{ds^2}(0) = - \int_0^\ell g_{\sigma}(R(U, \dot{\sigma})\dot{\sigma}, U)dt < 0,$$

which contradicts the minimality of the curve σ, which joins x and $f(x)$.
Therefore $d(x, f(x)) > 0$ is impossible.
Killing vector field $X \in \mathfrak{X}(M)$ of (M, L): if any local one-parameter transformation group of X consists of local isometries.

zeros of $X \iff$ fixed points of isometries

Theorem [S. Deng, 2007]

(M, L): connected, forward complete

$V = \{ p \in M \mid X(p) = 0 \} = \bigcup V_i$; V_i are connected components.

- each V_i is a totally geodesic closed submanifold of M;
- codim V_i is even;
- $\forall x \in V_i, y \in V_j, i \neq j$ there is a one-parameter family of geodesics connecting x and y; $\Rightarrow x$ and y are conjugate points.
- M compact; then for the Euler number :

$$\chi(M) = \sum \chi(V_i)$$

Corollary: the flag curvature is non-positive $\iff V$ is empty or connected.