NAME:

MATH 261
TEST 2, 30 points

SHOW YOUR WORK PLEASE

Problem 1 3 points Use implicit differentiation to find \(\partial z/\partial x \) and \(\partial z/\partial y \)

\[
\sin(xy^z) = x + 2y + 3z
\]

ANSWER

Problem 2 3 points. Find equations of the tangent plane to the given surface at the specified point.

\[
yz = \ln(x + z), \quad (0, 0, 1)
\]

ANSWER
Problem 3 3 points. Find the directional derivative of $f(x, y, z) = xy + yz + zx$ at $P(1,-1,3)$ in the direction of $Q(2,4,5)$.

ANSWER:

Problem 4 Find the absolute maximum and absolute minimum values of f on the set D.

$$f(x, y) = x^2 + 2y^2 - x \quad D = \{(x, y) | x \geq 0, y \geq 0, \ x^2 + y^2 \leq 4\}$$

ANSWER
Problem 5 3 points. Find the local maximum and local minimum and saddle point(s) of the function.

\[f(x, y) = x^4 + y^4 - 4xy + 2 \]
Problem 6 3 points. Use Lagrange multipliers to find the max and min values of f subject to the given constrain(s)

$$f(x, y, z) = x^2 y^2 z^2; \quad x^2 + y^2 + z^2 = 1$$

ANSWER:
Problem 7 3 points. Evaluate the double integral $\int_D 2xy \, dA$, D is the triangular region with vertices (0,0), (1,2) and (0,3).

Answer

Problem 8 3 points. Sketch the region of integration and change the order of integration.

$$\int_0^1 \int_{\arctan x}^{\pi/4} f(x, y) \, dy \, dx$$

Answer:
Problem 9 3 points. Use polar coordinates to find the area of the region OUTSIDE the cardioid $r = 1 + \cos \theta$, and INSIDE the circle $r = 3 \cos \theta$.

Answer
Problem 10 3 points. Evaluate the integral by reversing the order of integration

\[\int_0^8 \int_{\sqrt[4]{y}}^2 e^{x^4} \, dx \, dy \]

Answer

BONUS Problem 3 points. Suppose \(f \) is a differentiable function of one variable. Show that all tangent planes to the surface \(z = x f(y/x) \) intersect in a common point.