A set is a collection of items, referred to as the elements of the set.

Example 1: \[A = \text{Northwest States} = \{WI, MN, ND, MT, ID, WA\} \]

The set represents a group of states in which each state is an element that is included in the set.

\[ID \in A \; ; \quad \text{also} \quad MN, ND \in A \]

But \[IN \notin A \quad (\text{Indiana is not an element of set } A) \]
Example 2: If \(A = \{a, c, d, e, f\} \) and
\(B = \{b, c, d\}; \quad C = \{a, b, d\}; \quad D = \{a, b, d, g\} \)

\(B \subseteq A \); \(B \) contained by \(A \), or \(B \) is subset of \(A \).

(each element of \(B \) is included in \(A \))

\(C \subseteq A \); but \(D \not\subseteq A \) because \(g \) is not included in \(A \)

Important note: which of the following is correct and why?:

a) \(b, c \in A \)
b) \(b, c \subseteq A \)
c) \(\{b, c\} \subseteq A \)
d) \(\{b, c\} \in A \)
Set-Builder Notation:

Example 3: \(I = \{ x \mid x \text{ is an integer between } 2 \text{ and } 8 \} = \{2, 3, 4, 5, 6, 7, 8\} \).
The vertical line \(| \) is read “such as”

Example 4: \(I = \{ x \mid x \text{ is even and } 1 < x < 10 \} = \{2, 4, 6, 8\} \)

of Subsets:

Example 5: If \(A = \{ A, B \} \); \((Art and Biology)\)
How many decisions can be made regarding taking any of the above courses?

Example 6: If \(A = \{ A, B, C \} \); \((Art, Biology and Computer)\)
How many decisions can be made regarding taking any of the above courses?
<table>
<thead>
<tr>
<th># of elements</th>
<th># of subsets</th>
<th>Example</th>
<th>Subsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>$A = {a}$</td>
<td>${a}, {\emptyset}$</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>$A = {a, b}$</td>
<td>${a}, {b}, {a, b}, {\emptyset}$</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>$A = {a, b, c}$</td>
<td>${a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {\emptyset}$</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cardinality: the number of elements in a set.

Example 7: If \(A = \{a, b, c\} \); \(n(A) = 3 \)

Universal Set \(U \): The overall set where all other sets are subsets of it.

Example 8: \(U = \{\text{IUPUI students}\} \) with the following subsets:
- \(B = \{\text{Business students}\} \)
- \(F = \{\text{Fresmen students}\} \)
- \(R = \{\text{Resident students}\} \)
- \(S = \{\text{Senior students}\} \)

All of the above are subsets of the universal set \(U \).

Complement of a set: (what is missing from a subset compared to the universal set)

Example 9: \(U = \{a, b, c, d, e, f, g, h\} \); \(A = \{a, c, f\} \), \(B = \{b, c, g, h\} \)

Both sets \(A \) and \(B \) are subsets of the universal set \(U \) where:

- \(A' = \{b, d, e, g, h\} \), the elements missing from \(A \)
- \(B' = \{a, d, e, f\} \), the elements missing from \(B \)
Section 2.2: Set Operations

Example 1: Let \(U = \{ a, b, c, d, e, f, g, h, i \} \) with the following subsets

\[
A = \{a, b, d, e\}, \quad B = \{b, c, e, f, g\}, \quad C = \{e, f, h, i\}
\]

Find the following:

a) \(A' \)

b) \(B' \)

c) \(A \cup B \): The union of \(A \) and \(B \) is the set of all elements that are in \(A \) or \(B \) (or both)

d) \(A \cap B \): The intersection of \(A \) and \(B \) is the set of all elements that are in \(A \) and \(B \).

e) \(A \cap (B \cup C) \)

f) \((A \cap B) \cup C \)
Example 1 Cont.: Let $U = \{a, b, c, d, e, f, g, h, i\}$ with the following subsets

$$A = \{a, b, d, e\}, \quad B = \{b, c, e, f, g\}, \quad C = \{e, f, h, i\}$$

g) $(A - B)$: What is in A and not in B

h) $(B - A)$: What is in B and not in A

i) $(U - A)$: What is U and not in A, which is the same as A'

Example 2: If $A = \{1, 2, 3\}$, $B = \{5, 6, 7\}$, $C = \{2, 4\}$

Find the following

a) $A \cup B$

b) $A \cap B$

c) $A - B$

d) $A \times C$ (Cartesian product)

e) $C \times A$
Section 2.3: Venn Diagram

Example 3: If \(U = \{a, b, c, d, e, f, g, h, i\} \) and \(A = \{a, b, c, f\} \), \(B = \{b, c, d, e, g\} \) Find:

1) \(A' \) ; \(B' \)

2) \(A \cup B \)

 \((A \cup B)'\)

3) \(A \cap B \)

 \((A \cap B)'\)

4) \(A' \cap B' \)

5) \(A' \cup B' \)

De Morgan Law:

a) \((A \cup B)' = A' \cap B'\)

b) \(A' \cup B' = (A \cap B)'\)
Example 3 Cont.: If $U = \{a, b, c, d, e, f, g, h, i\}$ and $A = \{a, b, c\}$, $B = \{b, c, d, e, g\}$. Draw the Venn diagram.
Example 4: If $U = \{a, b, c, d, e, f, g\}$ and $A = \{a, b, f\}$, $B = \{c, d, e, g\}$ Find:

1) $A \cup B$

2) $A \cap B$

Partition: a) Union is all or: $A \cup B = U$
b) Nothing in Common or: $A \cap B = \emptyset$

Example 5: Mark has two sets of courses to choose from:

Set $A = \{\text{Chemistry, Math, English}\} = \{C, M, E\}$
Set $B = \{\text{French, History, Geology}\} = \{F, H, G\}$

Find:

a) the number of courses that are in A and B.

b) the number of courses that are in A or B.
Example 6: Mike has two sets of courses to choose from:

Set \(A = \{ \text{Chemistry, Math, English, History}\} = \{C,M,E,H\} \)

Set \(B = \{ \text{Math, English, French}\} = \{M,E,F\} \)

Find:

a) the number of courses that are in \(A \) and \(B \). \(n(A \cap B) \)

b) the number of courses that are in \(A \) or \(B \). \(n(A \cup B) \)

c) the number of courses that are in \(A \) only.

\[
n(A \cup B) = n(A) + n(B) - n(A \cap B)
\]
Example 7: In a survey of 80 people, it was found that:
45 read the Sport magazine (S)
40 read the Time magazine (T)
10 read both magazines (T & S)
Find the number of people that read:

a) Time only b) Sport only c) neither magazine d) either magazine
Example 8: In a survey of 200 people, it was found that:

- 150 listen to Rock music \((R)\)
- 80 listen to Slow music \((S)\)
- 55 listen to Classic music \((C)\)
- 60 listen to Rock and Slow music \((R \& S)\)
- 25 listen to Classic and Slow music \((C \& S)\)
- 40 listen to Rock and Classic \((R \& C)\)
- 15 listen to all \((R \& S \& C)\)

Find the number of people that listen to:

a) Rock only

b) 2 kind of music

c) Rock and Slow but not Classic

d) none
Example 9: In a survey, it was found that:

- 55 students took History (H)
- 45 students took English (E)
- 25 students took Geography (G)
- 7 students took English and History but not Geography
- 5 students took Geography and History but not English
- 3 students took Geography and English but not History
- 30 students took English only

Find the number of students that took:

a) the three subjects at the same time b) History only
Example 10: If A and B are subsets of U and: $n(A) = 5$, $n(B') = 7$, $n(A' \cap B') = 3$. Find $n(A \cup B)$.
Example 11: Let A, B, and C be subsets of U, use the Venn diagram to shade the solution:
Example 11 Cont.: Let A, B, and C be subsets of U, use the Venn diagram to shade the solution:
Example 11 Cont.: Let \(A, B, \) and \(C \) be subsets of \(U \), use the Venn diagram to shade the solution:

\[
\begin{align*}
\text{i) } & (A \cap B') \cup C \\
\text{J) } & (A \cup B \cup C) \cup (A \cap B) \\
\text{k) } & (A \cup B \cup C) \cap (A \cap B)
\end{align*}
\]
Example 12: Which of the following statements is True?

a) \(A^\prime \cup B^\prime = (A \cup B)^\prime \)

b) \(A\cap B^\prime = (A \cap B)^\prime \)

c) \(A \cap B^\prime \subseteq A \cap B \)