A GAUSS-BONNET-CHERN FORMULA FOR FINSLER MANIFOLDS

Zhongmin Shen

Abstract. Let \(\pi : E \to M \) be an oriented fiber bundle with \(\text{dim } E_x = p \) and \(\mathcal{V}TE \) denote the vertical tangent bundle of \(E \). Given a projection \(p : TE \to \mathcal{V}TE \), a Riemann metric \(h \) on \(\mathcal{V}TE \) and a metric-compatible connection \(D \) on \(\mathcal{V}TE \), we construct a \((p + 1)\)-form \(\text{Pf} \) and a \(p \)-form \(\Pi \) such that \(d\Pi = \text{Pf} \) and \(\int_{E_x} \Pi = 1, \forall x \in M \). When \(E = S \) is the tangent sphere bundle of \(M \), we establish a Gauss-Bonnet-Chern formula for any triple \(\{ p, h, D \} \) over \(S \). Since every Finsler metric \(F \) on \(M \) naturally gives a triple \(\{ p, h, D \} \) on \(S \), we establish a Gauss-Bonnet-Chern formula for all Finsler manifolds.

0. Introduction

In 1944, S. S. Chern [Ch3] proves the Gauss-Bonnet theorem for Riemann manifolds. Let \(M \) be an \(n \)-dimensional oriented \(C^\infty \) manifold (\(n = \) even). The tangent sphere bundle \(\pi : S \to M \) consists of all rays \([v] = \{ tv; t > 0 \} \). For any Riemann metric on \(M \), Chern constructs an \(n \)-form \(\text{Pf} \) on \(M \) from its curvature tensor and an \((n - 1) \)-form \(\Pi \) on \(S \) such that \(d\Pi = \pi^* \text{Pf} \) and \(\int_S \Pi = 1 \). Then he obtains the following formula: \(\int_M \text{Pf} = \chi(M) \).

We shall call a formula of this type a Gauss-Bonnet-Chern (GBC) formula. Given a Finsler metric \(F \) on \(M \), one would like to establish an analogue of the GBC formula for \(F \). In this case, the problem becomes more difficult, since there is no canonical “metric-compatible” and “torsion-free” linear connection of \(F \) on \(TM \). Nevertheless, \(F \) naturally induces a Riemann metric \(g \) on \(\pi^* TM \). Here \(\pi^* TM \) denotes the pull-back tangent bundle over \(S \). There is a canonical section \(\ell \) of \(\pi^* TM \) given by \(\ell[v] = 1/F(v, v) \). Following [Ch3], one can construct an \(n \)-form \(\text{Pf} \) and an \((n - 1) \)-form \(\Pi \) on \(S \) by

\[
\text{Pf} := (-1)^{\frac{n}{2} - 1} \frac{2}{n! \text{vol}(S^n)} \sum \epsilon^{i_1 \cdots i_n} \Omega_{i_1}^{i_2} \cdots \Omega_{i_{n-1}}^{i_n},
\]

and

\[
\Pi := \sum_{k=0}^{n} (-1)^k c_k \sum \epsilon^{i_1 \cdots i_n} \Omega^{i_2}_{i_1} \cdots \Omega^{i_{2k}}_{i_{2k-1}} \theta^{i_{2k+1}} \cdots \theta^{i_{n-1}} \ell^{i_n}.
\]

1991 Mathematics Subject Classification. Primary 53C60, Secondary 53C20, 53B40.
where c_k are determined by $c_k = \frac{(n-2k-1)}{2k} c_{k-1}$, $c_0 = \frac{1}{(n-1)\text{Vol}(S^{n-1})}$. When F is Riemannian, according to [Ch3], one has

\begin{align}
(0.3) \quad & d\Pi = Pf, \\
(0.4) \quad & \int_{S_x} \Pi = 1, \quad \forall x \in M.
\end{align}

Then one can prove the Gauss-Bonnet theorem by the Hopf theorem. However, (0.3)(0.4) does not hold simultaneously for a general Finsler metric F, no matter which connection we take.

Take the Cartan connection on π^*TM, which is metric-compatible with g. Lichnerowicz [L] first verifies that $d\Pi = Pf$. He also notices that $\int_{S_x} \Pi \neq 1$. Therefore he restricts himself to the class of Finsler metrics with $(S_x, h_x) = \mathbb{S}^{n-1}, \forall x \in M$ (hence $\int_{S_x} \Pi = 1$), where h_x denotes the induced Riemann metric on S_x. However, this is a very strong restriction. According to a theorem of Brickell [Br], Finsler metrics with $(S_x, h_x) = \mathbb{S}^{n-1}, \forall x \in M$ must be Riemannian, provided that $n \geq 3$ and $F(-\nu) = F(\nu)$.

It is Bao and Chern [BC2] who first make the following non-trivial observation. Bao and Chern show that the $(n-1)$-form Π of the Chern connection (or any torsion-free connection) has very nice properties. First, $d\Pi = Pf + \mathfrak{F}$. The additional term \mathfrak{F} occurs, because a torsion-free connection is not metric-compatible. Second, the the restriction of Π to S_x is a multiple of the volume form of (S_x, h_x). This observation leads to a GBC formula for Finsler manifolds with $\text{vol}(S_x, h_x) = \text{constant}$.

After [BC2], the author [S] also establishes several GBC formulas for certain class of Finsler manifolds, by analysing the geometric data of Π on S_x for the $(n-1)$-form Π of the Cartan connection. Other attempts (in lower dimensions) can be found in [B] [R] [Ch4] [M][BSC2], etc.

Our goal in this paper is to establish a GBC formula for all Finsler manifolds. Recall that a Finsler metric F on M naturally induces a Riemannian metric g on π^*TM. Let ∇ denote the Cartan connection on π^*TM. The Cartan connection has the following property. $\nabla: TS \to \pi^*TM$ is a bundle map of rank $n-1$ such that $\nabla: VTS \to \ell^\perp$ is an isomorphism. Let $\{e_i\}_{i=1}^n$ be an orthonormal frame for π^*TM with $e_n = \ell$. Put $\nabla e_i = \theta^\alpha \otimes e_\alpha$ and $\nabla e_j = \theta^j_\alpha \otimes e_i$ (hence $\theta^\alpha = \theta_n^\alpha$). Let $\{f_\alpha\}_{\alpha=1}^{n-1}$ be the basis for VTS determined by $\theta^\alpha(f_\beta) = \delta^\alpha_\beta$. Then we get a triple $\{p, h, D\}$ over S by

\begin{equation}
(0.5) \quad p = \theta^\alpha \otimes f_\alpha, \quad h = \theta^\alpha \otimes \theta^\alpha|_{VTS}, \quad D f_\beta = \theta_\beta^\alpha \otimes f_\alpha.
\end{equation}

Here $p: TS \to VTS$ is a projection, h is a Riemann metric on VTS and D is a metric-compatible connection on (VTS, h).

The curvature form (Ω^i_j) of ∇ is defined by by

\begin{equation}
(0.6) \quad \Omega^i_j := d\theta^i_j - \theta^i_j \wedge \theta_k^i.
\end{equation}

The torsion form (Θ^α) and the curvature form (Θ_β^α) of D are defined by

\begin{align}
(0.7) \quad & \Theta^\alpha := d\theta^\alpha - \theta^2 \wedge \theta_\beta^\alpha, \\
(0.8) \quad & \Theta_\beta^\alpha := d\theta_\beta^\alpha - \theta_\beta^\tau \wedge \theta_\tau^\alpha.
\end{align}
\{\Omega^i_j\} \text{ and } \{\Theta^\alpha, \Theta^\beta_\alpha\} \text{ are related by}

\begin{align*}
\Theta^\alpha &= \Omega^n_\alpha, \\
\Theta^\alpha_\beta &= \Omega^\alpha_\beta - \theta^\beta \wedge \theta^\alpha.
\end{align*}

In order to establish a GBC formula for a Finsler metric, it suffices to establish a GBC formula for an arbitrary triple \{p, h, D\} over \mathcal{S}.

Let \(M\) be a closed oriented manifold of dimension \(n = p + 1\). Let \{p, h, D\} be an arbitrary triple over \(\mathcal{S}\); namely, \(p : TS \to VTS\) be a projection map, \(h\) is a Riemann metric on \(VTS\) and \(D\) is a metric-compatible connection on \((VTS, h)\). Let \(\{f_\alpha\}\) be a positive orthonormal frame for \(VTS\). Let \((\theta^\alpha), (\theta^\beta_\alpha), (\Theta^\alpha)\) and \((\Theta^\beta_\alpha)\) be given by (0.5) and (0.8), respectively. The vertical parts \(Q^\alpha\) and \(Q^\beta_\alpha\) of \(\Theta^\alpha\) and \(\Theta^\beta_\alpha\) are determined by

\begin{align*}
Q^\alpha &\equiv \Theta^\alpha, \quad Q^\beta_\alpha \equiv \Theta^\beta_\alpha, \quad \text{over } VTS.
\end{align*}

Put

\begin{align*}
\Omega^\beta_\alpha &= dQ^\beta_\alpha + Q^\mu_\beta \wedge \theta^\alpha \wedge \theta^\mu \wedge Q^\alpha_\mu.
\end{align*}

The following forms are well-defined on \(\mathcal{S}\).

\begin{align*}
\Phi_k &= \sum \epsilon^{\alpha_1 \cdots \alpha_p} \Theta_{\alpha_1}^{\alpha_2} \cdots \Theta_{\alpha_{2k-1}}^{\alpha_{2k}} \theta^{\alpha_{2k+1}} \cdots \theta^{\alpha_p}, \\
\Psi_k &= \sum \epsilon^{\alpha_1 \cdots \alpha_p} \Theta_{\alpha_1}^{\alpha_2} \cdots \Theta_{\alpha_{2k-1}}^{\alpha_{2k}} \Theta_{\alpha_{2k+1}}^{\alpha_{2k+2}} \cdots \theta^{\alpha_p}, \\
\Phi_k^{(v)} &= \sum \epsilon^{\alpha_1 \cdots \alpha_p} Q_{\alpha_1}^{\alpha_2} \cdots Q_{\alpha_{2k-1}}^{\alpha_{2k}} \theta^{\alpha_{2k+1}} \cdots \theta^{\alpha_p}, \\
\Psi_k^{(v)} &= \sum \epsilon^{\alpha_1 \cdots \alpha_p} Q_{\alpha_1}^{\alpha_2} \cdots Q_{\alpha_{2k-1}}^{\alpha_{2k}} \Theta_{\alpha_{2k+1}}^{\alpha_{2k+2}} \cdots \theta^{\alpha_p}, \\
F_k^{(v)} &= \sum \epsilon^{\alpha_1 \cdots \alpha_p} \Theta_{\alpha_1}^{\alpha_2} \cdots Q_{\alpha_{2k-1}}^{\alpha_{2k}} \theta^{\alpha_{2k+1}} \cdots \theta^{\alpha_p}.
\end{align*}

Here we put \(F_0^{(v)} = 0\) and \(\Psi_k = \Psi_k^{(v)} = 0\) if \(2k = p\).

Let \(h_x = h_{\mathcal{S}_x}\). The function \(V(x) := \text{vol}(\mathcal{S}_x, h_x)\) is called the volume function on \(M\). In general, \(V(x) \neq \text{constant}\).

For arbitrary constants \(c_k\), define

\begin{align*}
Pf &= \frac{1}{p! V(x)} \left\{ \sum_{k=0}^{[\frac{p}{2}]} c_k [(p - 2k)(\Psi_k - \Psi_k^{(v)}) - kF_k^{(v)}] \\
&\quad - \pi^* d(\log V) \wedge (\Phi_k - \Phi_k^{(v)}) + [p \Psi_0 - \pi^* d(\log V) \wedge \Phi_0] \right\}.
\end{align*}

The following is the main theorem.
Theorem 0.1. Let M be an oriented closed manifold of dimension $n = p + 1$. Given a projection $p : TS \to VTS$, a Riemann metric h on VTS, and a metric-compatible connection on VTS. For any vector field X on M with isolated zeros, the n-form Pf in (0.18) satisfies

\[
\int_M [X]^* Pf = \chi(M),
\]

where $[X] : M \setminus \{\text{zeros}\} \to S$ denotes the section defined by X.

The proof of Theorem 0.1 will be given in §1-§3. Note that when $V(x) = \text{constant}$, (0.18) reduces to

\[
Pf = \frac{1}{p! V(x)} \sum_{k=0}^{\left[\frac{p}{2} \right]} c_k ((p - 2k)(\Psi_k - \Psi_k^{(v)}) - kF_k^{(v)} + p\Psi_0).
\]

Applying (0.19) to the special case when the triple $\{p, h, D\}$ over S is given by a Finsler metric F, one obtains a GBC formula for F (Theorem 4.2). In §5, we shall derive the Gauss-Bonnet-Chern formula for Riemann manifolds from Theorem 4.2, by choosing a suitable set of constants $\{c_k\}$ in (0.18).

Acknowledgements. The author would like to thank David Bao and S.S.Chern for many valuable discussions.

1. **Exact forms on a fiber bundle**

In §0, we briefly describe how to get the triple $\{p, h, D\}$ over S from a Finsler metric F on a smooth manifold M of dimension $n = p + 1$. Then we define an n-forms Pf (0.18) and state Theorem 0.1. In this section we shall study a general triple $\{p, h, D\}$ over an arbitrary fiber bundle $\pi : E \to M$ with $\dim E_x = p$, where $p : TE \to VTE$ is a projection, g is a Riemann metric on VTE and D is a metric-compatible connection on (VTE, h).

Let $\{f_\alpha\}_{\alpha=1}^p$ be a positive orthonormal frame for (VTE, h). Let $\{\theta^\alpha\}$ and $\{\theta_\beta^\alpha\}$ be given by

\[p = \theta^\alpha \otimes f_\alpha, \quad Df_\beta = \theta_\beta^\alpha \otimes f_\alpha.\]

Let $(\Theta^\alpha), (\Theta_\beta^\alpha), \Phi_k$ and Ψ_k be given by (0.7), (0.8), (0.13) and (0.14), respectively. We have

Lemma 1.1.

\[
d\Phi_k = (p - 2k)\Psi_k, \quad 0 \leq k \leq \left[\frac{p}{2} \right]
\]

Here we put $\Psi_k = 0$ when $2k = p$.

Proof. We have the following Bianchi identities

\[
d\Theta^\alpha = -\Theta^\beta \wedge \theta_\beta^\alpha + \theta^\beta \wedge \Theta_\beta^\alpha
\]

\[
d\Theta_\beta^\alpha = -\Theta_\beta^\mu \wedge \theta_\mu^\alpha + \theta_\beta^\mu \wedge \Theta_\mu^\alpha.
\]
We first prove (1.1) for \(k = 0 \).

\[
d\Phi_0 = \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \sum_{i=1}^{p} (-1)^{i-1} \theta^{\alpha_1} \cdots (\sum_{\beta} \theta^{\beta}) \wedge \theta^{\alpha_i} \cdots \theta^{\alpha_p} + \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \sum_{i=1}^{p} (-1)^{i-1} \theta^{\alpha_1} \cdots \Theta^{\alpha_i} \cdots \theta^{\alpha_p}
\]

\[
= \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \theta^{\alpha_1} \cdots (\sum_{i=1}^{p} \Theta^{\alpha_i}) \cdots \theta^{\alpha_p}
\]

\[
= p\Psi_0.
\]

Then we deal with the general case, \(1 \leq k \leq \left\lceil \frac{p}{2} \right\rceil \). Observe that

\[
d\Phi_k = -2k \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \left(\sum_{t=1}^{2k} \Theta^{\alpha_t} \wedge \Theta^{\alpha_{t+2}} \right) \Theta^{\alpha_4} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
+ (p - 2k) \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k}} \left(\sum_{t=1}^{p} \Theta^{\beta} \wedge \theta^{\alpha_{t+2k+1}} \right) \theta^{\alpha_{2k + 2}} \cdots \theta^{\alpha_p}
\]

\[
= -2k \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \left(\sum_{t=1}^{2k} \Theta^{\alpha_t} \wedge \Theta^{\alpha_{t+2}} \right) \Theta^{\alpha_4} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
- 2k \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \left(\sum_{t=1}^{p} \Theta^{\alpha_t} \wedge \Theta^{\alpha_{t+2}} \right) \Theta^{\alpha_4} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
+ (p - 2k) \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k}} \left(\sum_{t=1}^{p} \Theta^{\beta} \wedge \theta^{\alpha_{t+2k+1}} \right) \theta^{\alpha_{2k + 2}} \cdots \theta^{\alpha_p}
\]

\[
+ (p - 2k) \Psi_k
\]

\[
= -2k A - 2k B + (p - 2k) C + (p - 2k) \Psi_k.
\]

We assert that \(A = 0 \).

\[
A = \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \left(\sum_{t=1}^{2k} \Theta^{\alpha_t} \wedge \Theta^{\alpha_{t+2}} \right) \Theta^{\alpha_4} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
= 2k \sum \varepsilon_{\alpha_1 \cdots \alpha_4 \cdots \alpha_p} \Theta^{\alpha_3} \Theta^{\alpha_3} \Theta^{\alpha_4} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
= 2k \sum \varepsilon_{\alpha_4 \cdots \alpha_1 \cdots \alpha_p} \Theta^{\alpha_3} \Theta^{\alpha_3} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
= -2k \sum \varepsilon_{\alpha_1 \cdots \alpha_4 \cdots \alpha_p} \Theta^{\alpha_3} \Theta^{\alpha_3} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k-1}} \theta^{2k+1} \cdots \theta^{\alpha_p}
\]

\[
= -A.
\]

Thus \(A = 0 \). It is not difficult to verify that

\[
B = (p - 2k) \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k}} \theta^{2k} \theta^{\alpha_{2k+1}} \theta^{\alpha_{2k+2}} \cdots \theta^{\alpha_p}.
\]

\[
C = 2k \sum \varepsilon_{\alpha_1 \cdots \alpha_p} \Theta^{\alpha_1} \cdots \Theta^{\alpha_{2k}} \theta^{2k} \theta^{\alpha_{2k+1}} \theta^{\alpha_{2k+2}} \cdots \theta^{\alpha_p}.
\]
Remark: If \(p = 2m \), then
\[
\Phi_m := \sum \varepsilon^{\alpha_1 \cdots \alpha_p} \Theta_{\alpha_1}^{\alpha_2} \cdots \Theta_{\alpha_p}^{\alpha_{p-1}}
\]
is a closed form representing the Euler class of \(VE \).

Let \(\{ c_k \} \) be an arbitrary set of constants. Define
\[
\tilde{\Pi} := \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor} c_k \Phi_k,
\]
(1.4)
\[
\tilde{\Psi} := \sum_{i=0}^{\lfloor \frac{p}{2} \rfloor} (p - 2i) c_k \Psi_k.
\]
(1.5)

It follows from Lemma 1.1 that \(d \tilde{\Pi} = \tilde{\Psi} \). However, \(\int_{E_x} \tilde{\Pi} \neq \text{constant} \). In \(\S 2 \), we shall modify \(\tilde{\Pi} \) as well as \(\tilde{\Psi} \) to get the desired \(\Pi \) and \(\Psi \) satisfying (0.3)(0.4).

2. The construction of \(\Psi \) and \(\Pi \) on a fiber bundle

Let \(\pi : E \rightarrow M \) be an oriented fiber bundle with \(\dim E_x = p \). Given a triple \(\{ p, h, D \} \) over \(E \). In this section we shall construct a \((p+1) \)-form \(\Psi \) and a \(p \)-form \(\Pi \), satisfying (0.3)(0.4) on \(E \).

Let \(\{ f_\alpha \} \) be a positive orthonormal basis for \(\langle \mathcal{V}TE, h \rangle \). Put
\[
p := \theta^\alpha \otimes f_\alpha, \quad Df_\beta = \Theta_\beta^\alpha \otimes f_\alpha.
\]

Let \(\{ \omega^i \}_{i=1}^q \) be a positive co-frame for \(\pi^* T^* E \subset T^* E \). Then \(T^* E \) has the following direct decomposition
\[
T^* E = \text{span}\{ \omega^i \} \oplus \text{span}\{ \theta^\alpha \}.
\]

Let \((\Theta^\alpha) \) and \((\Theta_\beta^\alpha) \) be given by (0.7)(0.8). \((\Theta^\alpha) \) and \((\Theta_\beta^\alpha) \) can be expressed as follows
\[
\Theta^\alpha = \frac{1}{2} R^\alpha_{ij} \omega^i \wedge \omega^j + P^\alpha_{i\mu} \omega^i \wedge \theta^\mu + \frac{1}{2} Q^\alpha_{\lambda\mu} \theta^\lambda \wedge \theta^\mu
\]
(2.1)
\[
\Theta_\beta^\alpha = \frac{1}{2} R^\alpha_{i\beta} \omega^i \wedge \omega^j + P^\alpha_{i\mu} \omega^i \wedge \theta^\mu + \frac{1}{2} Q^\alpha_{\lambda\mu} \lambda^\mu \wedge \theta^\mu
\]
(2.2)

Let \((Q^\alpha) \) and \((Q_\beta^\alpha) \) be given by (0.11). we have
\[
Q^\alpha = \frac{1}{2} Q^\alpha_{\lambda\mu} \theta^\lambda \wedge \theta^\mu
\]
(2.3)
\[
Q_\beta^\alpha = \frac{1}{2} Q_\beta^\alpha \lambda^\mu \theta^\lambda \wedge \theta^\mu.
\]
(2.4)

Let \(h_x = (i_x)^* h \), where \(i_x : E_x \rightarrow E \) denotes the natural embedding. The volume function \(V \) is defined by \(V(x) = \text{vol}(E_x, h_x) \). Let \(\{ \dot{f}_\alpha \} \) be the local frame for \(TE_x \) such that \((i_x)_*(\dot{f}_\alpha) = f_\alpha \). The induced linear connection \(\dot{D} \) on \(TE_x \) is given by
\[
\dot{D} \dot{f}_\beta = (i_x)^* \theta_\beta^\alpha \otimes \dot{f}_\alpha.
\]
(2.5)
Since \((i_x)^*\omega^i = 0\),

(2.6) \((i_x)^*\Theta^\alpha = (i_x)^*Q^\alpha\) is the torsion form of \(\hat{D}\), and

(2.7) \((i_x)^*\Theta^\beta_* = (i_x)^*Q^\alpha_\beta\) is the curvature form of \(\hat{D}\).

From (2.6)(2.7), one can see that if \(Q^\alpha = 0\), then \((i_x)^*Q^\alpha_\beta\) is the Riemann curvature form of \(h_x\) w.r.t. \(\lbrace f_\alpha \rbrace\).

Let \(Q^\alpha_k, \Phi_k, \Psi_k, \Phi^{(v)}_k, \Psi^{(v)}_k\) and \(F^{(v)}_k\) be given by (0.12)-(0.17). By the same argument as for Lemma 1.1, we get the following

Lemma 2.1. For \(0 \leq k \leq \left\lfloor \frac{p}{2} \right\rfloor\), the following hold

\[
(2.8) \quad d\Phi^{(v)}_k = (p - 2k)\Psi^{(v)}_k + kF^{(v)}_k.
\]

Let \(c_k\) be arbitrary constants. Define \(P_f\) as in (0.18) and \(\Pi\) by

(2.9) \[
\Pi = \frac{1}{p!V(x)} \left\{ \sum_{k=0}^{\left\lfloor \frac{p}{2} \right\rfloor} c_k (\Phi_k - \Phi_k^{(v)}) + \Phi_0 \right\}
\]

Proposition 2.2. Let \(P_f\) and \(\Pi\) be constructed by (0.18) and (2.9). Then

\[
(2.10) \quad d\Pi = P_f
\]

and \(\Pi\) satisfies

(2.11) \[
\int_{E_x} (i_x)^*\Pi = 1, \quad \forall x \in M.
\]

Proof. Define \(dV\) on \(E\) by

\[
dV = \theta^1 \cdots \theta^p.
\]

Clearly, \(dV_x := (i_x)^*dV\) is the Riemann volume form of \((E_x, h_x)\). By Lemmas 1.1 and 2.1, one can easily verify (2.10). It follows from (2.6)(2.7) that

\[
(2.12) \quad (i_x)^*\Phi_k = (i_x)^*\Phi_k^{(v)}, \quad (i_x)^*\Phi_0 = p!(i_x)^*dV.
\]

Thus

\[
\int_{E_x} (i_x)^*\Pi = \frac{1}{V(x)} \int_{E_x} (i_x)^*dV = 1.
\]

\[\square\]

A natural question arises: Under what curvature condition \(V(x) = \text{constant}\)? We the following

Proposition 2.5. If \(P^\alpha_{k\beta} + P^\beta_{k\alpha} = 0\), then all fibers \((E_x, h_x)\) are isometric to each other. If \(P^\alpha_{k\alpha} = 0\), then \(V(x) = \text{constant}\).

Since the proof is quite simple (compare [S]), so is omitted here. Let

(2.13) \[
\mathcal{P} := P^\alpha_{k\alpha}\omega^k.
\]

We have, in general

(2.14) \[
d(\log V)(u) = \frac{1}{V(x)} \int_{E_x} (i_x)^*\mathcal{P}(X_u)dV, \quad \forall u \in TM
\]

where \(X_u\) denote the horizontal lift of \(u\). Thus if \(P^\alpha_{k\alpha} = 0\), then \(V(x) = \text{constant}\) (compare [BS]).
3. Proof of Theorem 0.1

Let \(M \) be as in Theorem 0.1. Let \(X \) be an arbitrary vector field with isolated singularities \(\{ x_i \}^q_{i=1} \). It follows from (2.10) that

\[
\int_{M \setminus (\cup_{i=1}^q B_r(x_i))} [X]^* Pf = \int_{M \setminus (\cup_{i=1}^q B_r(x_i))} d[X]^* \Pi = \sum_{i=1}^q \int_{\partial B_r(x_i)} [X]^* \Pi.
\]

Here \(B_r(x) := \varphi^{-1}(B^n_r) \) for some coordinate system \(\varphi : U \to \mathbb{R}^n \) with \(\varphi(x) = 0 \). Using (2.11), we can easily get

\[
\lim_{\epsilon \to 0^+} \int_{\partial B_r(x_i)} [X]^* \Pi = \text{ind}_{x_i}(X),
\]

where \(\text{ind}_{x_i}(X) \) denotes the index of \(X \) at \(x_i \). Thus

\[
\int_{M} [X]^* Pf = \sum_{i=1}^q \text{ind}_{x_i}(X).
\]

Theorem 0.1 follows from the Hopf theorem that the Euler number

\[
\chi(M) = \sum_{i=1}^q \text{ind}_{x_i}(X).
\]

4. Finsler manifolds

In this section, we shall apply Theorem 0.1 to Finsler manifolds.

Let \(M \) be a \(n \)-dimensional manifold \((n = p + 1) \). Let \(\pi : S \to M \) denote the tangent sphere bundle of \(M \) and \(\pi^* TM \) denote the pull-back tangent bundle over \(S \). The vectors in \(\pi^* TM \) are denoted by \((v, w)\), where \([v] \in S_x, w \in T_x M\). There is a canonical bundle map \(\rho : TS \to \pi^* TM \) defined by

\[
\rho(\tilde{X}) = ([v], \pi_*(\tilde{X})), \quad \forall \tilde{X} \in T[v]S.
\]

Let \((x^i) \) be a local coordinate system in \(M \) and \((x^i, y^j)\) the standard coordinate system in \(TM \). Denote by \(\partial_i|_v = ([v], \frac{\partial}{\partial x^i}|_x) \) the natural local basis for \(\pi^* TM \) at \([v] \in S_x\). Let \(F \) be a Finsler metric on \(M \) and write \(F(x, y) = F(y^i \frac{\partial}{\partial x^i}|_x) \). The induced Riemann metric \(g : \pi^* TM \otimes \pi^* TM \to \mathbb{R} \) and the Cartan tensor \(A : \pi^* TM \otimes \pi^* TM \otimes \pi^* TM \to \mathbb{R} \) are defined by

\[
g(\partial_i, \partial_i|_v) = \frac{1}{2} \frac{\partial^2 [F^2]}{\partial y^i \partial y^j} (x, y)
\]

\[
A(\partial_i, \partial_j, \partial_k|_v) = \frac{1}{4} F \frac{\partial^3 [F^2]}{\partial y^i \partial y^j \partial y^k} (x, y).
\]

Here \(v = y^i \frac{\partial}{\partial x^i}|_x \). The canonical section \(\ell \) of \(\pi^* TM \) is defined by

\[
\ell := ([v], \frac{v}{F(v)}).
\]
Let \(\{b_i\}_{i=1}^n \) be an arbitrary local frame for \(\pi^*TM \). Write \(g_{ij} = h(b_i, b_j), A_{ijk} = A(b_i, b_j, b_k) \), and \(\ell = \ell^i b_i \). We have

\[
(4.1) \quad g_{ij} \ell^i \ell^j = 1, \quad A_{ijk} \ell^i = 0.
\]

Let \(\{\omega^i\}_{i=1}^n \) be defined by \(\rho = \omega^i \otimes b_i \).

S. S. Chern proves the following theorem ([Ch1][Ch2][BC1]).

Theorem 4.1 (Chern). There is a unique set of local 1-forms \(\{\omega^i_j\} \) on \(S \) satisfying

\[
(4.2) \quad d\omega^i = \omega^j \wedge \omega^i_j,
\]

\[
(4.3) \quad dh_{ij} = h_{kj}\omega^i_k + h_{ik}\omega^j_k + 2A_{ijk}\theta^k,
\]

where

\[
(4.4) \quad \theta^i := d\ell^i + \ell^j \omega^i_j.
\]

Define a set of 1-forms \(\{\theta^i_j\} \) by

\[
\theta^i_j := \omega^i_j + A^i_{jk}\theta^k,
\]

where \(A^i_{jk} = g^{il}A_{jkl} \). It is easy to verify that

\[
(4.5) \quad d\omega^i = \omega^j \wedge \theta^i_j - A^i_{jk}\omega^j \wedge \theta^k,
\]

\[
(4.6) \quad dh_{ij} = h_{kj}\theta^i_k + h_{ik}\theta^j_k.
\]

By (4.1) we also have

\[
(4.7) \quad \theta^i = d\ell^i + \ell^j \theta^i_j.
\]

The Cartan connection \(\nabla \) and the Chern connection \(\nabla' \) on \(\pi^*TM \) are given by

\[
\nabla b_j = \theta^i_j \otimes b_i, \quad \nabla' b_j = \omega^i_j \otimes b_i.
\]

(4.2) means that \(\nabla' \) is torsion-free and (4.6) means that \(\nabla \) is metric-compatible.

Define a bundle map \(\mu : TS \to \pi^*TM \) by

\[
\mu := \nabla \ell = \theta^i \otimes b_i.
\]

It is easy to check that \(\text{rank} \mu = n - 1 \) and

\[
\mu|_{VTS} : VTS \to \ell^\perp
\]

is a bundle isomorphism.
From now on, we always let $\{e_i\}_{i=1}^n$ be an orthonormal frame for $\pi^*T\mathcal{M}$ such that $e_n = \ell$. Let $\{f_\alpha\}_{\alpha=1}^n$ be the orthonormal basis for $\mathcal{V}T\mathcal{S}$ such that $\mu(f_\alpha) = e_\alpha$.

Put $\rho = \omega^i \otimes e_i$ and $\mu = \theta^\alpha \otimes e_\alpha$. We have a direct decomposition for $T^*\mathcal{S}$

\[
T^*\mathcal{S} = \text{span}\{\omega^i\} \oplus \text{span}\{\theta^\alpha\}.
\]

Put $\nabla e_j = \theta^i_j \otimes e_i$. Hence $\theta^\alpha = \theta^\alpha_n$. Then we get a triple $\{p, h, D\}$ given by (0.5), that is,

\[
p = \theta^\alpha \otimes f_\alpha, \quad h = \theta^\alpha \otimes \theta^\alpha|\mathcal{V}T\mathcal{S}, \quad Df_\beta = \theta^\alpha_\beta \otimes f_\alpha.
\]

The curvature form (Ω^i_j) of ∇ is given by (0.6). It can be expressed by

\[
\Omega^i_j = \frac{1}{2} \tilde{R}^i_{jk} \omega^k \land \omega^l + \tilde{P}^i_{jk} \omega^j \land \theta^\alpha + \frac{1}{2} \tilde{Q}^i_{jk} \theta^\alpha \land \theta^\beta.
\]

Let (Θ^α) and (Θ^α_β) be given by (0.7)(0.8). From the definition, it is easy to show that

\[
\Theta^\alpha = \Omega^\alpha_n, \quad \Theta^\alpha_\beta = \Omega^\alpha_\beta - \theta^\beta \land \theta^\alpha.
\]

\[
Q^\alpha = \tilde{Q}^\alpha_n, \quad Q^\alpha_\beta = \tilde{Q}^\alpha_\beta - \theta^\beta \land \theta^\alpha.
\]

Let (Θ^α) and (Θ^α_β) be expressed by (2.1)(2.2). It follows from (4.10)-(4.13) that

\[
R^\alpha_{ij} = \tilde{R}^\alpha_{ij}, \quad P^\alpha_{i\mu} = \tilde{P}^\alpha_{i\mu}, \quad Q^\alpha_{\lambda\mu} = \tilde{Q}^\alpha_{\lambda\mu}.
\]

\[
R^\alpha_{i\beta} = \tilde{R}^\alpha_{i\beta}, \quad P^\alpha_{i\mu} = \tilde{P}^\alpha_{i\mu}, \quad Q^\alpha_{\beta\lambda\mu} = \tilde{Q}^\alpha_{\beta\lambda\mu} + \delta^\alpha_\lambda \delta^\beta_\mu - \delta^\alpha_\mu \delta^\beta_\lambda.
\]

By the well-known fact (see e.g. [BSc1]), we have

\[
\tilde{Q}^i_{j\alpha\beta} = A^i_{j\alpha A^i_{j\beta} - A^i_{j\beta} A^i_{j\alpha}}.
\]

\[
Q^\alpha_{\lambda\mu} = \tilde{Q}^\alpha_{\lambda\mu} = 0.
\]

Remark. It follows from (4.17) that $Q^\alpha = 0$. By (2.5)-(2.7), one can see that the induced \tilde{D} on \mathcal{S}_x is the Christoffel (Levi-Civita) connection of h_x. Further, $(i_x)^*Q^\alpha_\beta$ is the Riemann curvature of h_x.

Define a form Pf as in (0.18) in terms of $\Phi_k, \Psi_k, \Phi_k^{(v)}, \Psi_k^{(v)}, F_k^{(v)}$, which are related to θ^i and Ω^i_j by (0.11)-(0.17) and (4.10)-(4.13). The following is just a corollary of Theorem 0.1.

Theorem 4.2. Let (M, F) be an oriented closed Finsler manifold of dimension $n = p + 1$. For any vector field X with isolated zeros on M,

\[
\int_M [X]^*\text{Pf} = \chi(M).
\]
5. RIEMANNIAN MANIFOLDS

In this section we shall briefly derive the Gauss-Bonnet-Chern formula for Riemann manifolds from Theorem 4.2, by choosing a suitable set of constants \(\{c_k\} \) in (0.18).

Let \((M, \bar{g})\) be an oriented Riemannian manifold of dimension \(n = p + 1 \). Thus \(F(v) := \sqrt{\bar{g}(v,v)} \) is a special Finsler metric. We shall continue to use the notations in §4. Since \(A = 0 \), it follows from (4.15) (4.16) that

\[
Q_{\beta}^\alpha = -\theta^\beta \wedge \theta^\alpha.
\]

By (2.7), we know that \((S_x, h_x)\) has constant curvature = 1 (if \(n \geq 3 \)). Thus all \((S_x, h_x)\) are naturally isometric to the standard unit sphere \(S^{n-1} \) in \(\mathbb{R}^n \), in particular, \(V(x) = \text{vol}(S^{n-1}) \). It follows from (5.1) that

\[
O_{\beta}^\alpha = -\Theta^\beta \wedge \theta^\alpha + \theta^\beta \wedge \Theta^\alpha.
\]

Substituting (5.1) and (5.2) into \(\Psi_k^{(v)} \) and \(F_k^{(v)} \) yields

\[
\Psi_k^{(v)} = (-1)^k \Psi_0, \quad F_k^{(v)} = (-1)^k 2 \Psi_0.
\]

Suppose that constants \(c_k \) satisfy

\[
\sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (-1)^i c_i = 1.
\]

For such set of \(c_k \), define Pf as in (0.18). It follows from (5.3)(5.4) that

\[
Pf = \frac{1}{(n-1)! \text{vol}(S^{n-1})} \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} (n - 1 - 2i)c_i \Psi_i.
\]

Define

\[
Pf_o = -n \sum c^{\alpha_1 \cdots \alpha_{n-1}} \Omega_{\alpha_1}^{\alpha_2} \cdots \Omega_{\alpha_{n-1}}.
\]

Without much difficulty, one can find constants \(c_i \) satisfying (5.4), for which, the \(n \)-form \(Pf \) in (5.5) has the following form

\[
Pf = (-1)^{\frac{n}{2}} \frac{2}{n! \text{vol}(S^n)} Pf_o.
\]

Let \(\{\bar{e}_i\}_{i=1}^n \) be an arbitrary orthonormal frame for \((TM, \bar{g})\), and \(\{e_i = ([v]; \bar{e}_i)\}_{i=1}^n \) be the corresponding frame for \(\pi^*TM \). The induced Riemann metric \(g \) on \(\pi^*TM \) is given by \(g(e_i, e_j) = \bar{g}(\bar{e}_i, \bar{e}_j) \). Let \(\{\bar{\omega}^i\}_{i=1}^n \) be the dual co-frame frame for \(T^*M \). Then \(\{\omega^i\} \) defined by \(\rho \) (see §4) satisfy

\[
\omega^i = \pi^* \bar{\omega}^i.
\]
Let \((\tilde{\omega}_j^i)\) be the Levi-Civita connection form on \(TM\) and \((\bar{\Omega}_j^i)\) denote the curvature form. Then the Chern/Cartan connection form \((\omega_j^i) = (\theta_j^i)\) satisfies
\[
\omega_j^i = \theta_j^i = \pi^* \omega_j^i.
\]
The curvature form \((\Omega_j^i)\) has the following form
\[
(5.8) \quad \Omega_j^i = \pi^* \bar{\Omega}_j^i.
\]
Then \(Pf_o\) in (5.6) can also expressed by
\[
(5.10) \quad Pf_o = \sum \epsilon_{i_1 \cdots i_n} \Omega_{i_2}^{i_1} \cdots \Omega_{i_{n-1}}^{i_n} = \pi^* \sum \epsilon_{i_1 \cdots i_n} \bar{\Omega}_{i_2}^{i_1} \cdots \bar{\Omega}_{i_{n-1}}^{i_n}.
\]
It follows from (5.10) that the \(n\)-form \(Pf\) in (5.7) has the following form
\[
Pf = (-1)^{\frac{n}{2}} \frac{2}{n! \text{vol}(S^n)} \pi^* \sum \epsilon_{i_1 \cdots i_n} \bar{\Omega}_{i_2}^{i_1} \cdots \bar{\Omega}_{i_{n-1}}^{i_n}.
\]
Thus for any vector filed with isolated zeros on \(M\),
\[
[X]^* Pf = (-1)^{\frac{n}{2}} \frac{2}{n! \text{vol}(S^n)} \sum \epsilon_{i_1 \cdots i_n} \bar{\Omega}_{i_2}^{i_1} \cdots \bar{\Omega}_{i_{n-1}}^{i_n}.
\]
It follows from (4.18) that
\[
(5.11) \quad (-1)^{\frac{n}{2}} \frac{2}{n! \text{vol}(S^n)} \int_M \sum \epsilon_{i_1 \cdots i_n} \bar{\Omega}_{i_2}^{i_1} \cdots \bar{\Omega}_{i_{n-1}}^{i_n} = \chi(M).
\]
This is just the Gauss-Bonnet-Chern theorem proved by S. S. Chern in [Ch3].

References

Department of Mathematical Science, Indiana University-Purdue University at Indianapolis, Indianapolis, IN 46202–3216, U.S.A.

E-mail address: zshen@math.iupui.edu