1 Approximate, to the nearest 0.01 radians, all angles \(\theta \) in the interval \([0, 2\pi]\) that satisfy \(\tan \theta = 0.42 \).

2 Approximate, to the nearest 0.1°, all angles \(\theta \) in the interval \([0, 360°]\) that satisfy \(\cos \theta = -0.7490 \).

3 Find the exact value.

\[
\sin(-5\pi/4), \quad \cos(-60°), \quad \tan(330°), \quad \cot(3\pi/4), \quad \csc(240°).
\]

4 Use the graph of a trigonometric function to sketch the graph of the equation \(y = \tan(x) - 1 \).

5 Refer to the graph of \(y = \sin(x) \) to find the exact values of \(x \) in the interval \([0, 4\pi]\) that satisfy the equation \(\sin x = \frac{1}{2} \).

6 If \(\tan \theta = -2 \) and \(\sin \theta > 0 \), find \(\sin \theta \) and \(\cos \theta \).

7 Find the exact value of \(\sin \theta \) if \(\theta \) is in standard position and the terminal side of \(\theta \) is parallel to the line \(2y - 7x + 2 = 0 \).

8 Verify the identity \((\tan \theta + \cot \theta) \tan \theta = \sec^2 \theta \).

9 Express the angle \(\theta = 12.12° \) in terms of degrees, minutes and seconds, to the nearest second; express the angle \(\theta = 12°12'24" \) as a decimal to the nearest ten-thousandth of a degree.

10 A wheel of radius 5 in. is rotating at 40 rpm. Find the angular speed (in radians per minute) and (b) Find the linear speed of a point on the circumference (in ft/min).