1. Find the amplitude, the period, and the phase shift and sketch the graph of the equation.
 \[y = 2 \sin \left(\frac{1}{2} x - \pi \right) \].

2. (6.5.23) in the textbook.

3. Solve \(\triangle ABC \), given \(\gamma = 90^\circ \), \(\alpha = 25^\circ \) and \(b = 1 \).

4. Solve \(\triangle ABC \), given \(\gamma = 90^\circ \), \(a = 1.2 \) and \(b = 3.2 \).

5. A ship leaves port at 1:00 P.M. and sails in the direction \(N24^\circ W \) at a rate of 10 mi/hr. Another ship leaves port at 1:30 P.M. and sails in the direction \(N66^\circ E \) at a rate of 20 mi/hr. What is the bearing, to the nearest degree, from the first ship to the second?

6. Verify the identity: \[\frac{1 + \csc x}{\sec x} - \cot x = \cos x \].

7. Make the trigonometric substitution \(x = a \sin \theta \) for \(-\pi/2 < \theta < \pi/2\) and \(a > 0 \). Simplify the resulting expression. \[\frac{1}{x \sqrt{a^2 - x^2}} \].

8. Find the solutions of the equation \(\cos \theta = -\frac{\sqrt{3}}{2} \).

9. Find all solutions of the equation \(\cos \left(2x - \frac{\pi}{3} \right) = \frac{1}{2} \).

10. Find the solutions of the equation that are in the interval \([0, 2\pi)\). \(1 - \sin t = \sqrt{3} \cos t \).