1 If \(\alpha \) and \(\beta \) are third-quadrant angles such that \(\cos \alpha = -\frac{2}{3} \) and \(\cos \beta = -\frac{3}{5} \), find (a) \(\sin(\alpha - \beta) \), (b) \(\cos(\alpha - \beta) \) and (c) the quadrant containing \(\alpha - \beta \).

2 Find the exact values of \(\tan \frac{7\pi}{12} \) and \(\sin \frac{11\pi}{12} \).

3 Verify the identities
 \[
 (\sin t + \cos t)^2 = 1 + \sin(2t), \quad \cos^4 x - \sin^4 x = \cos 2x.
 \]

4 Find the solutions of the equation that are in the interval \([0, 2\pi)\).
 \[
 \cos t + \cos 2t = 0.
 \]

5 Find the exact values of \(\cos^{-1} \left[\cos \left(-\frac{\pi}{4} \right) \right] \) and \(\sin^{-1} \left[\sin \left(-\frac{\pi}{4} \right) \right] \).

6 Find the exact values of
 \[
 \tan \left[\cos^{-1} \left(-\frac{1}{2} \right) \right], \quad \sin \left[2\cos^{-1} \left(-\frac{3}{5} \right) \right], \quad \cos \left[\frac{5\pi}{4} - \sin^{-1} \left(-\frac{2}{3} \right) \right]
 \]

7 Given \(\alpha = 32^\circ \), \(c = 500 \) and \(a = 280 \), solve \(\Delta ABC \).

8 A surveyor notes that the direction from point A to point B is \(S63^\circ W \) and the direction from point A to point C is \(S38^\circ W \). The distance from A to B is 239 yards, and the distance from B to C is 374 yards. Approximate the distance from A to C.

9 Given \(a = 2, b = 3, c = 4 \), solve \(\Delta ABC \), and find the area of \(\Delta ABC \).

10 A ship leaves port at 1:00 P.M. and travels \(S35^\circ E \) at the rate of 24 mi/hr. Another ship leaves the same port at 1:30 P.M. and travels \(S20^\circ W \) at 18 mi/hr. Approximately how far apart are the ships at 3:00 P.M.?