Project 2. Functions of a Single Variable and Graphing

Objective

In this project you will learn how to define and graph a function in Maple.

Narrative

In Maple, the function \(f = f(x) \) is defined by the command:

\[
f := x -> \text{expression in } x
\]

and we can use the command:

\[
\text{plot}(f(x),x=a..b)
\]

to plot the function \(f \) from \(x = a \) to \(x = b \)

\[
\text{plot}(f(x),x=a..b,y=c..d)
\]

to plot the function \(f \) from \(x = a \) to \(x = b \), limiting output to points with \(y \)-coordinates between \(c \) and \(d \)

\[
\text{plot}([f(x),g(x)],x=a..b,y=c..d)
\]

to plot functions \(f \) and \(g \) from \(x = a \) to \(x = b \), restricting output to points with \(y \)-coordinates between \(c \) and \(d \)

Task

a) Type the command lines in the left-hand column below into Maple in the order in which they are listed. The effect of each command is described in the right-hand column for your reference, along with some questions you should ask yourself.

\[
> \text{# Project 2. Functions of a Single Variable and Graphing}
\]

\[
> \text{restart;}
\]

Clear Maple’s memory.

\[
> f := x -> \text{abs}(x^2-4)-2*x;
\]

Let \(f(x) = |x^2 - 4| - 2x \).

\[
> f(3);
\]

Evaluate \(f \) at \(x = 3 \).

\[
> \text{plot}(f(x),x=-50..50);
\]

Plot \(f \) from \(x = -50 \) to \(x = 50 \). (What does this graph tell you about the behavior of \(f \)? What would you say \(f(0) \) is just by looking at this graph? What value do you get when you substitute 0 for \(x \) in \(f(x) \)?)

\[
> \text{plot}(f(x),x=-1..1);
\]

Plot \(f \) from \(x = -1 \) to \(x = 1 \). (What does this graph tell you about the behavior of \(f \)? It’s not so clear anymore? You can estimate \(f(0) \), but how do you reconcile this graph with your earlier one? Well, …)

\[
> \text{plot}(f(x),x=-4..4);
\]

Plot \(f \) from \(x = -4 \) to \(x = 4 \). (Do you see what a difference the choice of \(x \)-values makes in getting a good plot of the graph of a function?)

\[
> \text{plot}(\tan(x),x=-\Pi..\Pi);
\]

Plot \(\tan(x) \) from \(x = -\pi \) to \(x = \pi \). (If you know what this graph should look like, it should be clear that this is not a good graph of the tangent function.)

\[
> \text{plot}(\tan(x),x=-\Pi..\Pi,y=-3..3);
\]

Plot \(\tan(x) \) from \(x = -\pi \) to \(x = \pi \), restricting output to points with \(y \)-coordinates between \(-3 \) and \(3 \). (Note that we get a much better graph by restricting \(y \)-coordinates, although now we have different scales on the \(x \)- and \(y \)-axes.)

b) Continue by typing the command lines below into Maple in the order in which they are listed.
Graph $f(x) = x$ and $g(x) = 2 \sin x$ from $x = -\pi$ to $x = \pi$ on the same set of axes. (Note that we can plot more than one function on the same set of axes. Let us find the coordinates of the point (x, y) of intersection of these graphs for which $x > 0$, in effect finding one of the solutions of $x = 2 \sin x$. Looking at our graph we observe that the correct x value lies between 1.8 and 1.9; so we graph both functions over this interval.)

Plot the graphs of $f(x) = x$ and $g(x) = 2 \sin x$ from $x = 1.8$ to $x = 1.9$. (From this graph it appears that the correct value of x lies between 1.89 and 1.90. So we graph both functions over this interval.)

Replot $f(x)$ and $g(x)$ from $x = 1.89$ to $x = 1.90$. (From this graph it appears that the correct value of x lies between 1.895 and 1.896. By continuing this process of “zooming in”, we could arrive at an arbitrarily precise estimate of the correct x-value.)

At this point, make a hard-copy of your typed input and Maple’s responses. Then, in each of the last three plots, label by hand the graphs of $f(x) = x$ and $g(x) = 2 \sin x$ by “$f(x) = x$” and “$g(x) = 2 \sin x$”, respectively.

Comments

1. Another way to solve the equation $x = 2 \sin x$ is to solve the equation $x - 2 \sin x = 0$ by “zooming in” on the zero of the function $h(x) = x - 2 \sin x$.

2. Observe that the more you “zoom in” on the graph of a function, the more linear the graph of a function such as $g(x) = 2 \sin x$ appears. Do you think this is true for all functions?

3. Even though the graphs of curves may appear to be smooth, the way programs like Maple graph functions is by plotting a finite number of points and “connecting-the-dots” with short line segments. Thus, rather than seeing a smooth curve when you plot a function such as $\sin x$, you are actually seeing a polygonal approximation to its graph. This may be why you see vertical lines in the graph of $\tan x$: if x is an odd multiple of $\pi/2$ then the value of $\tan x$ is undefined, but — unaware of this — Maple goes ahead and draws a line segment (from a point a little to the left of x to a point a little to the right of x), and that segment is exactly what you see when you see the vertical lines. (To see the dots that Maple uses to graph f, see what happens when you use the command `plot(f(x),x=a..b,style=point`).)

4. One thing you should have learned from this project is that while Maple is very useful for graphing, you cannot trust it completely: it might *not* reveal important behavior of a function if you look at a graph of the function at the wrong scale.

5. To specify a piecewise-defined function such as

$$f(x) = \begin{cases} x^2 & \text{if } x \leq 0 \\ 2x + 1 & \text{if } 0 < x \leq 1 \\ -2x & \text{if } x > 1 \end{cases}$$

in Maple use:

```maple
f := x -> if x <= 0 then x^2 elif x <= 1 then 2*x+1 else -2*x fi;
```

In addition to the `if/then/elif/else/fi` control structure, Maple offers many other structures. To learn more about them, check out the Programming section of Maple’s Help.