When Is the Inner Factor of $f - f(a)$ an Interpolating Blaschke Product for All a?

Carl Cowen

IUPUI

Eva Gallardo Gutiérrez
Universidad Complutense de Madrid

and

Pamela Gorkin
Bucknell University

UM Dearborn, Analysis Day, 29 April 2017
When Is the Inner Factor of $f - f(a)$ an Interpolating Blaschke Product for All a?

Carl Cowen

Eva Gallardo Gutiérrez

and

Pamela Gorkin

Thanks to: Simons Foundation Collaboration Grant 358080

Plan Nacional I+D MTM2013-42105-P

and

Simons Foundation Collaboration Grant 243653.
Dedicated to the Memory of Donald E. Sarason

January 26, 1933 – April 8, 2017
Some terminology:

$H^\infty(\mathbb{D}) = H^\infty$ is Banach space of bounded analytic functions on unit disk \mathbb{D}

Buerling: Every function in H^∞ has an inner-outer factorization $f = Ig$

where g is outer – polynomials in z times g are dense in H^p for $p < \infty$

and I is inner – $\left| \lim_{r \to 1^-} I(rie^{i\theta}) \right| = 1$ almost all θ

The inner function can be factored as $I = BS$ with both B and S inner and

for $|\lambda| = 1$ and integer $N \geq 0$, the Blaschke product B with zeros $\{z_k\}$ is

$$B(z) = \lambda z^N \prod_k \frac{|z_k|}{z_k} \left(\frac{z_k - z}{1 - \bar{z}_k z} \right)$$

and, for μ a singular measure on $\partial \mathbb{D}$, the singular inner factor S is

$$S_\mu(z) = \exp \left(- \int_0^{2\pi} \frac{e^{it} + z}{e^{it} - z} d\mu(t) \right)$$
In particular, if \(f = Ig = BSg \) is the inner-outer factorization of \(f \),

the Blaschke factor, \(B \), tells us where, in the disk, the value of \(f \) is 0,

and the singular inner factor \(S \), tells us where,

near the unit circle, the value of \(f \) is nearly 0.

In this talk, we’ll be interested in the different factorizations, for \(a \) in \(\mathbb{D} \):

\[
f - f(a) = I_ag_a = B_aS_ag_a
\]

and, in this factorization, the Blaschke factor tells us

where the value of \(f \) is the same as its value at \(a \).
It turns out that the singular factor, and repeated zeros in the Blaschke factor, are rarely there!

Rudin’s Theorem (1967):

For \(f \) in \(H^\infty \), the inner factor of \(f - f(a) \) is a Blaschke product with distinct zeros, except for \(a \) in a set of capacity zero in \(\mathbb{D} \).
We know that a function analytic on \mathbb{D} can take the value 0

only on a countable set with no accumulation points in \mathbb{D}.

For an H^∞ function f, the set where f takes the value 0

are the zeros of the Blaschke product B in the factorization $f = BSg$

The infinite product

$$B(z) = \lambda z^N \prod_{k} \frac{|z_k|}{z_k} \left(\frac{z_k - z}{1 - \overline{z_k}z} \right)$$

converges if and only if $\sum_k (1 - |z_k|) < \infty$ ($\{z_k\}$ is a Blaschke sequence)

so H^∞ functions vanish on a smaller set than general analytic functions!
If \(\{z_k\} \) is any sequence in \(\mathbb{D} \), the map \(E \) from \(H^\infty \) into \(\ell^\infty \)
given by \(E : f \mapsto (f(z_k))_{k=1}^\infty \) is clearly continuous.

Definition: We say \(\{z_k\} \) is an interpolating sequence if the map given by

\[
E : f \mapsto (f(z_k))_{k=1}^\infty \quad \text{maps} \quad H^\infty \quad \text{onto} \quad \ell^\infty.
\]

Definition: We say \(B \) is an interpolating Blaschke product

if \(B \) is a Blaschke product

\[
B(z) = \lambda \prod_k \frac{|z_k|}{z_k} \left(\frac{z_k - z}{1 - \overline{z_k}z} \right)
\]

and the zero set \(\{z_k\} \) is an interpolating sequence.
Definition: We say \(\{z_k\} \) is an interpolating sequence if the map given by

\[
E : f \mapsto (f(z_k))_{k=1}^\infty \quad \text{maps } H^\infty \text{ onto } \ell^\infty.
\]

Interpolating sequences have come up in many different ways in problems related to analytic functions on the disk and spaces of such analytic functions:

- Identifying the algebras between \(H^\infty(\mathbb{D}) \) and \(L^\infty(\partial \mathbb{D}) \)
- Understanding the topology of \(H^\infty \) in the corona
- Constructions of Toeplitz or composition operators with special properties
- Creating tools to study Toeplitz operators and composition operators
- Characterizing commutants of analytic Toeplitz operators
- Building universal operators to study the invariant subspace problem
In 1958, Carleson proved:

Theorem

The set of points \(\{z_j\}_{j \geq 1} \) in the disk is an interpolating sequence if and only if there exists \(\delta > 0 \) such that

\[
\inf_{k} \prod_{j \geq 1, j \neq k} \left| \frac{z_j - z_k}{1 - \overline{z}_j z_k} \right| \geq \delta
\]

Because \(\rho(z, w) = \left| \frac{z - w}{1 - \overline{z}w} \right| \) is the ‘pseudo-hyperbolic distance’ between \(z \) and \(w \), Carleson’s result says the points in an interpolating sequence are, in a very strong way, uniformly far apart.
In functional Hilbert spaces,

functional \(f \mapsto f(\alpha) \) for \(\alpha \) in \(\mathbb{D} \) is continuous, so there is vector \(K_\alpha \),
called the *kernel function for \(\alpha \)*, so that \(f(\alpha) = \langle f, K_\alpha \rangle \).

For \(H^2 \), the kernel functions are

\[
K_\alpha(z) = \frac{1}{1 - \overline{\alpha}z}
\]

One tool, in studying operators on Hilbert spaces, is choosing a good basis.

In 1961, H. S. Shapiro and A. L. Shields showed that

if \(\{\alpha_j\}_{j>0} \) is an interpolating sequence, then the set

\[
\frac{K_{\alpha_j}}{\|K_{\alpha_j}\|} \quad j > 0
\]

is (Banach) equivalent to an orthonormal basis of the subspace \(H^2 \ominus BH^2 \)

where \(B \) is the Blaschke product with zero set \(\{\alpha_j\}_{j>0} \).
Using the equivalence of \(\left\{ \frac{K_{\alpha_j}}{\|K_{\alpha_j}\|} \right\}_{j>0} \) to an orthonormal basis, the following characterization of certain commutants is obtained:

Theorem [C., 1978]

Let \(\Omega \) be bounded domain in \(\mathbb{C} \), let \(\varphi \) be the covering map of \(\mathbb{D} \) onto \(\Omega \), and let \(G \) be the group of linear fractional maps on \(\mathbb{D} \) satisfying \(\varphi \circ I = \varphi \).

If \(S \) is a bounded operator with \(ST_\varphi = T_\varphi S \), then for \(I \) in \(G \), there is an analytic function \(C_I \) defined on \(\mathbb{D} \) so that for each \(\alpha \) in \(\mathbb{D} \) and each \(g \) in \(H^2 \),

\[
(Sg)(\alpha) = \sum_{I \in G} C_I(\alpha)g(I(\alpha))
\]

where the series converges absolutely and uniformly on compact subsets of \(\mathbb{D} \).

Conversely, if bounded operator \(S \) has representation (1), then \(ST_\varphi = T_\varphi S \).
An easy example of an interpolating sequence is \(\{z_n\} \) where \(z_n = 1 - 2^{-n} \)

Theorem: If \(\varphi \) maps the unit disk into itself, \(\varphi(a) = a \) for \(|a| = 1 \) and \(\varphi'(a) < 1 \), then for any point \(z_0 \) in \(\mathbb{D} \), the sequence \(\{\varphi_n(z_0)\} \) is an interpolating sequence.

For \(\varphi(z) = (1 + z)/2 \), which maps \(\mathbb{D} \) into itself, \(\varphi(1) = 1 \), and \(\varphi'(1) = 1/2 < 1 \).

Since \(\varphi_n(0) = 1 - 2^{-n} \), this sequence is an interpolating sequence.
For another easy example, consider the singular inner function

\[S_1(z) = \exp \left(\frac{1 + z}{1 - z} \right) \]

which is associated with the singular measure \(\mu = \delta_1 \), point mass at \{1\}.

Clearly, 0 is not in the range of \(S_1 \), but every other point of \(\mathbb{D} \) is in the range and

\[S_1(\partial \mathbb{D} \setminus \{1\}) = \partial \mathbb{D} \]

Indeed, \(S_1 \) is a covering map of \(\mathbb{D} \) onto \(\mathbb{D} \setminus \{0\} \)

For \(p \neq 0 \) in \(\mathbb{D} \), the set

\[S_1^{-1}(\{p\}) = \{ z : S_1(z) = p \} \]

is an interpolating sequence in \(\mathbb{D} \).
In thinking about ‘covering maps’, we follow W. A. Veech’s book:

A Second Course in Complex Analysis, 1967.

Definition: Let \(\Omega \) and \(\Omega_1 \) be regions. A triple \((f, \Omega_1, \Omega)\) is a covering if

a) \(f : \Omega_1 \to \Omega \) is analytic and,

b) if \(z_0 \in \Omega_1 \) and \(w_0 \in \Omega \) satisfy \(f(z_0) = w_0 \) and if \(\gamma \) is an arc from \(w_0 \) in \(\Omega \), then \(f^{-1} \) can be continued along \(\gamma \) with values in \(\Omega_1 \) and initial value \(z_0 \).

We say \(\Omega_1 \) is a covering surface of \(\Omega \) and \(f \) is a covering map.

If \(f \) is a covering map, then \(f'(z) \neq 0 \) for \(z \in \Omega_1 \), and \(f(\Omega_1) = \Omega \).

For \(S_1 \) above, the triple \((S_1, \mathbb{D}, \mathbb{D} \setminus \{0\}) \) is a covering.
If \(f \) is a covering map and \(\Omega \) is simply connected, then \(f \) is also one-to-one.

We say that a region \(\Omega_1 \) is a universal covering of a region \(\Omega \) if \(\Omega_1 \) is simply connected and there is a covering, \((f, \Omega_1, \Omega)\).

The name “universal covering” stems from the “universal property”:

Theorem Let \((f_1, \Omega_1, \Omega)\) be a covering with \(\Omega_1\) simply connected.

If \((f_2, \Omega_2, \Omega)\) is a covering,

then there is a covering \((c, \Omega_1, \Omega_2)\) such that \(f_1 = f_2 \circ c\).

Example: The triple \((z^2, \mathbb{D} \setminus \{0\}, \mathbb{D} \setminus \{0\})\) is a covering.

The triple \((S_1, \mathbb{D}, \mathbb{D} \setminus \{0\})\) is a universal covering.
Theorem If Ω is analytically equivalent to a bounded region and z_0 is a prescribed point in Ω, then there exists a unique covering $f : \mathbb{D} \to \Omega$ such that $f(0) = z_0$ and $f'(0) > 0$.

We also have the following:

Proposition If Ω is analytically equivalent to a bounded region, not simply connected, and $f : \mathbb{D} \to \Omega$ is a covering map, then the fiber
$$\{z \in \mathbb{D} : f(z) = f(a)\}$$
is an infinite sequence for all a in \mathbb{D}.

Theorem[C., 1978] Let c be a covering map from \mathbb{D} onto bounded domain Ω. If Ω is not simply connected, then for every $a \in \mathbb{D}$, the inner factor of $c - c(a)$ is an interpolating Blaschke product.
Theorem[C., Gallardo-Gutiérrez, Gorkin, 2016]

Let f be non-constant analytic mapping of \mathbb{D} onto bounded domain, $f(\mathbb{D})$.

Then $f'(z) \neq 0$ for every z in \mathbb{D}

if and only if

there is an analytic, universal covering, c, mapping the simply connected domain, \mathbb{U}, not equal to \mathbb{C}, onto the domain $f(\mathbb{D})$

and a univalent, analytic map, σ of \mathbb{D} into \mathbb{U} so that $f = c \circ \sigma$.
Example: Let \(f(z) = (1 + .5z)^8 \) and consider \(f(D) \).

The set \(f(D) \) is contained in the annulus \(.0039 < 2^{-8} < |w| < 1.5^8 < 26 \) and is *not* simply connected.

The derivative \(f'(z) = 4(1 + .5z)^7 \neq 0 \) for \(z \) in the unit disk.

We can take \(U \subset \{ u : -8 \log(2) < \text{Re}(u) < 8 \log(1.5) \} \) and \(c(u) = \exp(u) \)

and \(\sigma(D) \subset U \), but \(|\text{Im}(\sigma(z))| < 1.5\pi \) (!!) so that \(f(z) = c(\sigma(z)) \).

Indeed, \(\sigma(z) = 8\log(1 + .5z) = \log((1 + .5z)^8) \)

so that \(f(z) = \exp(\log((1 + .5z)^8)) = (1 + .5z)^8 \) !
Figure 1: The set $f(D)$ for $f(z) = (1 + .5 \cdot z)^8$
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

First, choose 0 as a base point in \mathbb{D} and $w_0 = f(0)$ as a base point in $f(\mathbb{D})$.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

First, choose 0 as a base point in \mathbb{D} and $w_0 = f(0)$ as a base point in $f(\mathbb{D})$.

Since $f(\mathbb{D})$ is a bounded domain, there is a universal cover on any domain U that is conformally equivalent to the unit disk. Choose u_0 as a base point in U; there is a unique universal cover, c, of U onto $f(\mathbb{D})$ for which $c(u_0) = w_0$ and $c'(u_0) > 0$.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

First, choose 0 as a base point in \mathbb{D} and $w_0 = f(0)$ as a base point in $f(\mathbb{D})$.

Since $f(\mathbb{D})$ is a bounded domain, there is a universal cover on any domain U that is conformally equivalent to the unit disk. Choose u_0 as a base point in U; there is a unique universal cover, c, of U onto $f(\mathbb{D})$ for which $c(u_0) = w_0$ and $c'(u_0) > 0$.

Since $f'(z) \neq 0$, the function f is locally univalent at every point of \mathbb{D}. For any path, γ, from 0 to z_1 in \mathbb{D}, $f(\gamma)$ is a path from w_0 to w_1 in $f(\mathbb{D})$. Because f is locally univalent, there is a unique lifting of this path in U from u_0 to u_1. Now, define $\sigma(z_1) = u_1$. Because \mathbb{D} and U are simply connected, all is well defined and σ is univalent.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

First, choose 0 as a base point in \mathbb{D} and $w_0 = f(0)$ as a base point in $f(\mathbb{D})$.

Since $f(\mathbb{D})$ is a bounded domain, there is a universal cover on any domain U that is conformally equivalent to the unit disk. Choose u_0 as a base point in U; there is a unique universal cover, c, of U onto $f(\mathbb{D})$ for which $c(u_0) = w_0$ and $c'(u_0) > 0$.

Since $f'(z) \neq 0$, the function f is locally univalent at every point of \mathbb{D}. For any path, γ, from 0 to z_1 in \mathbb{D}, $f(\gamma)$ is a path from w_0 to w_1 in $f(\mathbb{D})$. Because f is locally univalent, there is a unique lifting of this path in U from u_0 to u_1. Now, define $\sigma(z_1) = u_1$. Because \mathbb{D} and U are simply connected, all is well defined and σ is univalent.

(Conversely, suppose $f = c \circ \sigma$) $f'(z) = c'(\sigma(z))\sigma'(z)$; since c' and σ' are never 0, f' is never 0.
Corollary [C., Gallardo-Gutiérrez, Gorkin, 2016]

Let f be non-constant analytic mapping of D onto bounded domain, $f(D)$. Then $f'(z) \neq 0$ for every z in D

if and only if

for each a in D, the zero sequence of $f - f(a)$ is a single point,

or for each a in D, the zero sequence is an interpolating sequence.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

If $f(\mathbb{D})$ is simply connected, then the universal covering map is univalent.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

If $f(\mathbb{D})$ is simply connected, then the universal covering map is univalent.

If $f(\mathbb{D})$ is not simply connected, there is a universal covering map so that $f = c \circ \sigma$ and the zeros of $c - c(u_0)$ are all interpolating.
Sketch of proof: (Assume $f'(z) \neq 0$ for z in \mathbb{D})

If $f(\mathbb{D})$ is simply connected, then the universal covering map is univalent.

If $f(\mathbb{D})$ is not simply connected, there is a universal covering map so that $f = c \circ \sigma$ and the zeros of $c - c(u_0)$ are all interpolating.

Conversely, suppose $f'(z_0) = 0$ for some z_0 in \mathbb{D}. In this case, for $g(z) = f(z) - f(z_0)$, we have $g(z_0) = g'(z_0) = 0$, so the zero set of g, that is, the zero sequence of $f - f(z_0)$, is not an interpolating sequence.
Theorem[C., Gallardo-Gutiérrez, Gorkin, 2016]

Let f be an H^∞ function.

Then f is an exactly n-to-1 map of \mathbb{D} onto a bounded domain, where $n > 1$, if and only if

$f(\mathbb{D})$ is simply connected and there is a Riemann map c of \mathbb{D} onto $f(\mathbb{D})$ such that $f = c \circ B$, where B is a finite Blaschke product of order n.
THANK YOU!