Bifurcation study of blood flow control in the kidney

Ashlee N. Ford Versypta, Elizabeth Makrides, Julia C. Arciero, Laura Ellwein, Anita T. Layton

Abstract

Renal blood flow is maintained within a narrow window by a set of intrinsic autoregulatory mechanisms. Here, a mathematical model of renal hemodynamics control in the rat kidney is used to understand the interactions between two major renal autoregulatory mechanisms: the myogenic response and tubuloglomerular feedback. A bifurcation analysis of the model equations is performed to assess the effects of the delay and sensitivity of the feedback system and the time constants governing the response of vessel diameter and smooth muscle tone. The results of the bifurcation analysis are verified using numerical simulations of the full nonlinear model. Both the analytical and numerical results predict the generation of limit cycle oscillations under certain physiologically relevant conditions, as observed in vivo.

1. Introduction

Many biological systems exhibit spontaneous limit cycle oscillations. The mechanisms that give rise to such biological oscillators are intrinsically nonlinear; indeed, no linear system has robust limit cycle behavior. One example of biological limit cycle oscillations occurs in the kidney [1,2]. The kidney regulates the balance of water, salt, and blood pressure using filtration, reabsorption, and secretion of the appropriate amounts of water and solutes along the length of renal tubules. The thick ascending limb (TAL) is a bundle of capillaries, and a tubule whose wall consists of a single layer of epithelial cells. Blood is delivered via the afferent arteriole to the glomerulus, where filtration begins. In the TGF, changes in the chloride ion concentration in the TAL are detected by a collection of epithelial cells at the exit of the TAL called the macula densa (MD). This generates feedback signals that alter the afferent arteriolar smooth muscle tone in order to regulate the glomerular filtration rate [3]. In the present study, we use this model to explore the influence of key bifurcation parameters, including the feedback loop sensitivity, delay, and time constants that govern changes in the diameter and smooth muscle tone of the afferent arteriole. Frequencies of oscillations in the TAL are determined by the balance of transport processes in the epithelial cells of the renal tubule. In particular, the thick ascending limb (TAL), a water-impermeable portion of the tubule in a zone called the loop of Henle, actively and passively transports sodium chloride from tubular fluid into the interstitium outside of the tubule where molecules and ions can be reabsorbed by the bloodstream through nearby capillaries.

To maintain normal renal function, fluid flow through the nephron must be kept within a narrow range. This is accomplished primarily by two physiological regulatory mechanisms: the myogenic response and tubuloglomerular feedback (TGF). The myogenic response induces vasoconstriction in response to increases in blood pressure. In TGF, changes in the chloride ion concentration in the TAL are detected by a collection of epithelial cells at the exit of the TAL called the macula densa (MD). This generates feedback signals that alter the afferent arteriolar smooth muscle tone in order to regulate the glomerular filtration rate. Fig. 1 is a schematic diagram illustrating the anatomy involved in these regulatory mechanisms. The reader may also refer to [3] for additional detail on kidney physiology.

Spontaneous fluctuations of fluid flow and oscillating intratubular pressure have been observed in the rat kidney [1,2,4–8]. Mathematical models of the TGF mechanism have successfully simulated these phenomena [9–12], and sensitivity analysis of these models has suggested the oscillatory or steady state behavior depends on physical and transport characteristics of the TAL. We have recently developed a renal hemodynamics model that combines both the myogenic and TGF mechanisms and used the model to study renal autoregulation [13]. In the present study, we use this model to explore the influence of key bifurcation parameters, including the feedback loop sensitivity, delay, and time constants that govern changes in the diameter and smooth muscle tone of the afferent arteriole. Frequencies of oscillations in the TAL are determined by the balance of transport processes in the epithelial cells of the renal tubule. In particular, the thick ascending limb (TAL), a water-impermeable portion of the tubule in a zone called the loop of Henle, actively and passively transports sodium chloride from tubular fluid into the interstitium outside of the tubule where molecules and ions can be reabsorbed by the bloodstream through nearby capillaries.

http://dx.doi.org/10.1016/j.mbs.2015.02.015
0025-5564/© 2015 Elsevier Inc. All rights reserved.
In Section 2, the present model includes a partial differential equation (PDE) for the chloride ion concentration in the thick ascending limb (TAL), and ordinary differential equations (ODEs) for the afferent arteriolar diameter and smooth muscle tone. The chloride concentration at the end of the TAL is sensed by the macula densa (MD), causing adjustments in the afferent arteriolar diameter and tone, which in turn impact the chloride ion concentration by changing the flow rate entering the TAL.

Schematic diagram of the major components of a kidney nephron. As detailed in Fig. 1.

We present the details of the first analytical bifurcation analysis of Eq. (2.1) has the explicit form

\[F(D(t)) = \alpha \beta Q_A \frac{\pi D(t)^4 \Delta P}{128 \mu L}. \]

(2.4)

Here \(Q_A \) is the afferent arteriole flow rate which, in accordance with Poiseulle’s law, depends on diameter, \(D(t) \); pressure drop along the afferent arteriole, \(\Delta P \); viscosity, \(\mu \); and afferent arteriole segment length, \(L \). The parameter \(\beta \) represents the fraction of the afferent arteriole flow entering the loop of Henle. The quantity \(Q = \beta Q_A \) is commonly referred to as the single nephron glomerular filtration rate (SNGFR), and \(\alpha \) is the portion of the SNGFR that is not reabsorbed along the proximal tubule or the descending limb of the loop of Henle before entering the TAL. Note that the TAL is assumed to be water impermeable, so that fluid flow along the TAL is constant in space, although it may vary in time.

The second term in Eq. (2.2) represents active NaCl reabsorption and is assumed to follow standard Michaelis–Menten kinetics. The last term describes chloride ion diffusion across the TAL with permeability \(p \), while \(C_{t}(x) \) is the extratubular chloride ion concentration, which is assumed to be time independent. \(C_t(x) \) is given as [11]

\[C_t(x) = C_0 (B e^{-2x/L} + (1 - B)). \]

(2.5)

where

\[B = \frac{1 - C_t(L)}{C_0} \frac{1}{1 - e^{-2}}. \]

(2.6)

The extra- and intratubular chloride ion concentrations are assumed to be equal at the bend of the loop of Henle, so that the boundary condition for chloride ion concentration is given by a constant: \(C(0, t) = C_0 = 275 \text{ mM} \) [11].

We use a previously developed vessel wall mechanics model [22,23] to predict changes in the diameter and smooth muscle tone of the afferent arteriole according to the myogenic and TGF mechanisms. The quantities \(P_{\text{avg}} \) and \(P_{\text{avg,s}} \) appearing in Eq. (2.2) refer to midpoint pressures in the afferent arteriole; these are determined by the incoming pressure and pressure drop, i.e., \(P_{\text{avg}} = P - \Delta P/2 \), where \(P \) is the intraluminal pressure entering the afferent arteriole. \(P_{\text{avg,s}} \) is the midpoint pressure with the control (baseline) incoming pressure of 100 mmHg, whereas \(P_{\text{avg}} \) may vary. In the present study, the pressure \(P \) is fixed at 100 mmHg so that \(P_{\text{avg}} \) does not change and the dynamics over a wide parameter range can be assessed. In our previous work [13], we explored the effects of pressure change on the system by varying afferent arterial pressure between 60 and 180 mmHg. Future studies will combine both investigations to assess simultaneously the effect of varying parameter values and average pressure values on the appearance of limit cycle oscillations.

The total tension in the afferent arteriole wall is expressed as a sum of passive and active components:

\[T_{\text{total}}(D(t), A(t)) = T_{\text{pass}}(D(t)) + A(t) T_{\text{act}}^{\max}(D(t)). \]

(2.7)
where T_{pass} describes passive tension as an exponential function of diameter,

$$T_{\text{pass}}(D(t)) = c_{\text{pass}} \exp \left(c_{\text{pass},1} (D(t)/D_0 - 1) \right),$$
(2.8)

and $T_{\text{act}}^{\text{max}}$ represents maximally active tension as a Gaussian function of diameter,

$$T_{\text{act}}^{\text{max}}(D(t)) = c_{\text{act}} \exp \left[\frac{- \left(D(t)/D_0 - c_{\text{act},1} \right)^2}{c_{\text{act},2}} \right].$$
(2.9)

Finally, in Eq. (2.3) the level of smooth muscle tone, Λ_{total}, is modeled as a sigmoidal function of a stimulus, S_{tone}, which includes both the myogenic response and TGF mechanism. Thus,

$$\Lambda_{\text{total}}(C(L, t - \tau), D(t)) = \frac{1}{1 + \exp\left(-S_{\text{tone}}(C(L, t - \tau), D(t)) \right)}. $$
(2.10)

where

$$S_{\text{tone}}(C(L, t - \tau), D(t)) = c_{\text{myo}} \frac{P_{\text{myo}}(D(t))}{2} + \frac{C_L}{1 + \exp\left(-c_{\text{TGF}}(C(L, t - \tau) - C_{\text{MD}}) \right)} - S_{\text{tone}}. $$
(2.11)

With all parameters set to their reference values as given in Table 1, we refer to the steady state model solution as the reference state, since this is the baseline from which other simulations—which may proceed to limit cycle oscillations or return to the steady state upon perturbation—are run. The reference state values of all physiological quantities, A_0, is a dimensionless variable ranging from 0 to 1. Experimental values are as given in the indicated reference.

$$A_0 = 0.5$$

Table 1: Reference values for all parameters appearing in Eqs. (2.1)–(2.11). Abbreviations: thick ascending limb (TAL); macula densa (MD); afferent arteriole (AA); vascular smooth muscle (VSM).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>TAL luminal radius</td>
<td>cm</td>
<td>10.0×10^{-4}</td>
<td>[11]</td>
</tr>
<tr>
<td>V_{max}</td>
<td>Maximum active transport rate</td>
<td>mol/cm² s</td>
<td>1.45×10^{-9}</td>
<td>[11]</td>
</tr>
<tr>
<td>K_m</td>
<td>Michaelis constant</td>
<td>mM</td>
<td>70.0</td>
<td>[11]</td>
</tr>
<tr>
<td>p</td>
<td>TAL Cl⁻ permeability</td>
<td>cm/s</td>
<td>1.5×10^{-5}</td>
<td>[11]</td>
</tr>
<tr>
<td>L</td>
<td>Length of TAL</td>
<td>cm</td>
<td>0.5</td>
<td>[15]</td>
</tr>
<tr>
<td>C_L</td>
<td>Luminal [Cl⁻] at loop of Henle</td>
<td>mM</td>
<td>275.0</td>
<td>[11]</td>
</tr>
<tr>
<td>$C_L(D)$</td>
<td>Interstitial [Cl⁻] at MD</td>
<td>mM</td>
<td>150.0</td>
<td>[11]</td>
</tr>
<tr>
<td>t_D</td>
<td>Time constant for AA diameter response</td>
<td>s</td>
<td>1.0</td>
<td>[16,17]</td>
</tr>
<tr>
<td>P_{AA}</td>
<td>Midpoint pressure in AA, control state</td>
<td>mmHg</td>
<td>75</td>
<td>[18]</td>
</tr>
<tr>
<td>P_{AA}'</td>
<td>Midpoint pressure in AA, specified</td>
<td>mmHg</td>
<td>75</td>
<td>[18]</td>
</tr>
<tr>
<td>t_L</td>
<td>Time constant for activation response</td>
<td>s</td>
<td>10.0</td>
<td>[16,17]</td>
</tr>
<tr>
<td>T</td>
<td>Time delay, MD to AA response</td>
<td>s</td>
<td>4.0</td>
<td>[11]</td>
</tr>
<tr>
<td>β</td>
<td>Glomerular filtration fraction</td>
<td>–</td>
<td>0.084</td>
<td>Calculated</td>
</tr>
<tr>
<td>α</td>
<td>Fraction of glomerular filtrate entering TAL</td>
<td>–</td>
<td>0.2</td>
<td>[19]</td>
</tr>
<tr>
<td>ΔP</td>
<td>Pressure drop along AA</td>
<td>mmHg</td>
<td>50</td>
<td>[18]</td>
</tr>
<tr>
<td>μ</td>
<td>Blood viscosity in AA</td>
<td>cP</td>
<td>4.14</td>
<td>[20]</td>
</tr>
<tr>
<td>C_0</td>
<td>Afferent arteriole segment length</td>
<td>cm</td>
<td>0.031</td>
<td>[21]</td>
</tr>
<tr>
<td>$\varepsilon_{\text{pass}}$</td>
<td>Passive tension strength</td>
<td>dyn/cm</td>
<td>220</td>
<td>[22]</td>
</tr>
<tr>
<td>$\varepsilon_{\text{pass},1}$</td>
<td>Passive tension sensitivity</td>
<td>–</td>
<td>11.47</td>
<td>[22]</td>
</tr>
<tr>
<td>D_0</td>
<td>Passive reference AA diameter</td>
<td>μm</td>
<td>33</td>
<td>Calculated</td>
</tr>
<tr>
<td>C_{VSM}</td>
<td>Maximally active VSM peak tension</td>
<td>dyn/cm</td>
<td>274.19</td>
<td>[22]</td>
</tr>
<tr>
<td>$c_{\text{act},1}$</td>
<td>Maximally active VSM length dependence</td>
<td>–</td>
<td>0.75</td>
<td>[22]</td>
</tr>
<tr>
<td>$c_{\text{act},2}$</td>
<td>Maximally active VSM tension range</td>
<td>–</td>
<td>0.38</td>
<td>[22]</td>
</tr>
<tr>
<td>C_{VSM}</td>
<td>VSM activation [Cl⁻] sensitivity cm/dyn</td>
<td>0.159</td>
<td>[11]</td>
<td></td>
</tr>
<tr>
<td>C_{TGF}</td>
<td>VSM activation [Cl⁻] sensitivity cm/dyn</td>
<td>1.8</td>
<td>Estimated</td>
<td></td>
</tr>
<tr>
<td>C_{MD}</td>
<td>[Cl⁻] at MD</td>
<td>mM</td>
<td>32.32</td>
<td>Calculated</td>
</tr>
<tr>
<td>β_{VSM}</td>
<td>VSM constant</td>
<td>–</td>
<td>12.59</td>
<td>Estimated</td>
</tr>
</tbody>
</table>

Table 2: Model and experimental values for key physiological quantities. Model steady state values correspond to the solution calculated using parameter values given in Table 1. We refer to the model solution calculated with parameter values from Table 1 as the reference state. Note that the activation, A_0, is a dimensionless variable ranging from 0 to 1. Experimental values are as given in the indicated reference.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
<th>Model</th>
<th>Experiment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>AA diameter</td>
<td>μm</td>
<td>14.7</td>
<td>14.8 ± 1.0</td>
<td>[17]</td>
</tr>
<tr>
<td>A</td>
<td>AA activation</td>
<td>–</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Q_A</td>
<td>AA flow rate</td>
<td>nl/min</td>
<td>355.4</td>
<td>316 ± 24</td>
<td>[24]</td>
</tr>
<tr>
<td>Q</td>
<td>SNGFR</td>
<td>nl/min</td>
<td>30.0</td>
<td>36.8 ± 9.1 , 28.2 ± 2.1</td>
<td>[25],[24]</td>
</tr>
<tr>
<td>F</td>
<td>Flow rate entering TAL</td>
<td>nl/min</td>
<td>6.0</td>
<td>69 ± 0.7</td>
<td>[19]</td>
</tr>
</tbody>
</table>

$C_{\text{MD}} = 32.32$ mmHg is a typical value for the SNGFR observed in rats. The reader is also referred to [13] for comparison of model solutions to
experimental data over a range of afferent arterial pressures from 60 to 180 mmHg.

3. Analytical and numerical methods

The present study seeks to better understand the dynamic behaviors of the renal autoregulatory system and the stability of steady state solutions. Small, transient perturbations in blood flow may result from an animal’s heartbeat, respiration, or motion. After activating the hemodynamics feedback responses, these perturbations may die out, allowing tubular fluid flow to return to a steady state, or the perturbations may grow, evolving into a limit cycle oscillation. The precise outcome depends on the characteristics of the system. Using the model detailed in Section 2, we implement numerical and analytical approaches to predict the asymptotic behavior of the in vivo tubular fluid dynamics that occur in response to a perturbation.

In the first approach, the model is solved numerically for various combinations of model parameters. Although this yields a solution to the full nonlinear problem, employing this approach involves characterizing model behavior via an undirected exploration of the full space of physiologically relevant parameter values. Bifurcation analysis provides a second and complementary approach, directing subsequent numerical simulation to parameter regions that are both dynamically interesting and biologically relevant.

In this section, the algorithms used to solve the model equations numerically and to simulate the effects of perturbations are described, and a characteristic equation is derived and analyzed from a linearization of the model equations. In Section 4, we demonstrate the complementary nature of these two approaches.

3.1. Numerical simulation and perturbation algorithm

To explore the dynamics of the model for specific sets of model parameters, the model solution can be obtained by direct numerical computation. The model equations given by Eqs. (2.1)–(2.3) are coupled and must be solved simultaneously. The chloride ion concentration from Eq. (2.1) is used by Eq. (2.3) with a time delay, τ. The diameter D from Eq. (2.2) is used to update the inlet flow rate F(D(t)) for Eq. (2.1). This system of equations is solved numerically by first using the method of lines [27] and the upwind differencing scheme to reduce the PDE in Eq. (2.1) to a system of ODEs in time and then using the method of lines [27] and the upwind differencing scheme to discretize the PDE unless otherwise indicated, and the maximum time-step size in the DDE solver is set to 0.1 s to prevent high frequency numerical oscillations that may result from steps that are too large.

To simulate the dynamic effect of a perturbation, a small step perturbation in flow rate is held for a moderate duration, and then flow rate is allowed to vary with changes in D and A induced by the chloride ion concentration deviation from steady state that resulted from the perturbation in flow rate. The simulation algorithm for this numerical experiment involves four steps. First, the reference state is initialized by determining the steady state values of D and activation A with the reference state parameters specified, and by computing the steady state spatial distribution of chloride ions C(x) with constant inlet flow rate F calculated by the steady state value of D. Second, the solver DDE23 is used to solve the coupled model equations numerically as described above with the reference state conditions given as a constant history vector for the solver. This part of the simulation algorithm determines the coupled steady state solution at the reference state. Third, a 1% step increase in the flow rate is imposed for 15.7 s, which is the time interval required for fluid to move through the entire TAL at the reference state F. These values for the small pulse magnitude and duration match those used in the analogous bifurcation study for TGF-associated oscillations [11]. While F is perturbed by this constant step change, D and A are held constant, and the PDE for chloride ion transport with a constant flow rate is solved numerically by the solver DDE23 with the function for the system of DDEs modified to maintain constant D, A, and F for the perturbation interval. Thus, C(x) continues to change during this flow perturbation interval. In the final step of the numerical experiment, F, D, and A are reinitialized to their reference state values and then are allowed to change in response to the perturbed C(x), which is specified as the dynamic history vector by means of the numerical solution from the perturbation time interval. The solver DDE23 is used to solve the model equations until a steady state or limit cycle oscillation develops after the perturbation interval (total simulation time of at least 1000 s) to determine the dynamics of the DDE system in response to a perturbation from the steady state.

Spectral plots shown in Section 4 are computed using the discrete Fourier transform routine FFT in MATLAB. Time profiles for D are computed as described in this section, with sampling frequency 10 Hz and total length 1000 s or 10,000 points, and are then trimmed to remove the steady state portion of the profile prior to the pulse. The steady state value of D is subtracted from the time-varying value at each point of the remaining time series in order to remove the zero-frequency signal. The number of points in the discrete Fourier transform is set to 16,384, the smallest power of two greater than 10,000.

3.2. Bifurcation analysis

While numerical simulations can be run for a variety of model parameter values, bifurcation analysis is used to quickly identify system behavior for a larger parameter space.

3.2.1. General form of the characteristic equation

To begin, we derive a general form for the characteristic equation that allows for straightforward substitutions or model refinements in the future. The model equations (2.1)–(2.3) can be written in the following general form:

\[\frac{\partial}{\partial t} C(x, t) = F^{(0)}(D(t); \mu_0) \frac{\partial}{\partial x} C(x, t) + F^{(1)}(C(x, t); \mu_1) \]

\[\frac{d}{dt} D(t) = F^{(2)}(D(t), A(t); \mu_2) \]

\[\frac{d}{dt} A(t) = F^{(3)}(D(t), A(t), C(t)); \mu_3). \]

where the particular forms of the functions F(i) and the vectors of parameters \(\mu_i, i = 0, \ldots, 3 \) are determined by Eqs. (2.1)–(2.11).

Linearizing about a steady state solution \(\bar{C}(x), \bar{D}, \bar{A} \) yields

\[\frac{\partial}{\partial t} \begin{pmatrix} C(x, t) \\ D(t) \\ A(t) \end{pmatrix} = \begin{pmatrix} F^{(0)}(\bar{D}) \partial_x + F^{(1)}(\bar{C}) \\ 0 \\ F^{(2)}(\bar{D}, \bar{A}) \end{pmatrix} \begin{pmatrix} F^{(2)}(\bar{D}, \bar{A}, \bar{C}(L)) \\ F^{(3)}(\bar{D}, \bar{A}, \bar{C}(L)) \end{pmatrix} \times \begin{pmatrix} C(x, t) \\ D(t) \\ A(t) \end{pmatrix} \]

where \(C(x, t), D(t), A(t) \) is properly a solution on \([t - \tau, t]\), and we define \(\bar{C}(L) := C(L, t - \tau) \). Differentiation with respect to \(x \) is denoted by ‘\(\partial_x \) throughout, while \(\partial_x^{(i)} \) indicates the partial derivative with
with the analogous convention for C and D. The dependence on parameters μ_t is suppressed. Making the ansatz
\[
\begin{pmatrix}
C(x, t) \\
D(t) \\
A(t)
\end{pmatrix} = \begin{pmatrix} f(x) \\
0 \\
0 \end{pmatrix} e^{\lambda t}
\]
(3.5)
gives
\[
\lambda \begin{pmatrix}
b_1 \\
b_2
\end{pmatrix} = \begin{pmatrix}
\frac{F^{(0)}(\bar{D})f'(x) + \bar{F}^{(1)}(\bar{C})(x)f(x) + F^{(1)}(\bar{D})\bar{C}(x)b_1}{\bar{F}^{(1)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2} \\
0 \\
-\frac{F^{(1)}(\bar{D}, \bar{A}, \bar{C}(L))f(0)e^{-\lambda t}}{0}
\end{pmatrix}
\]
which can be rewritten as
\[
\begin{pmatrix}
\frac{F^{(0)}(\bar{D})f'(x) + \bar{F}^{(1)}(\bar{C})(x)f(x) + F^{(1)}(\bar{D})\bar{C}(x)}{\bar{F}^{(1)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2} \\
0 \\
0
\end{pmatrix} = \begin{pmatrix}
\lambda - \bar{F}^{(1)}(\bar{C}(x)) & -\frac{F^{(0)}(\bar{D})\bar{C}(x)}{\bar{F}^{(1)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2} & 0 \\
0 & \lambda - \bar{F}^{(2)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2 & -\frac{F^{(1)}(\bar{D}, \bar{A}, \bar{C}(L))}{\bar{F}^{(1)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2}
\end{pmatrix}
\]
(3.6)
so that the first row of Eq. (3.6) is an ODE. Solving for b_2 in terms of b_1, λ, and $f(0)$ from the third row of Eq. (3.6) gives
\[
b_2 = \frac{F^{(2)}(\bar{D}, \bar{A}, \bar{C}(L))b_1 + F^{(2)}(\bar{D}, \bar{A}, \bar{C}(L))f(0)e^{-\lambda t}}{\lambda - \bar{F}^{(2)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2}.
\]
Substituting this solution for b_2 into the second row of Eq. (3.6) gives an expression for b_1:
\[
b_1 = \frac{-\bar{F}^{(2)}(\bar{D}, \bar{A})F^{(2)}(\bar{D}, \bar{A}, \bar{C}(L))f(0)e^{-\lambda t}}{\lambda - \bar{F}^{(2)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2 + F^{(2)}(\bar{D}, \bar{A}, \bar{C}(L))}.
\]
(3.7)
The following differential equation results from the first row:
\[
f'(x) = \left(\frac{\lambda - \bar{F}^{(1)}(\bar{C}(x))}{\bar{F}^{(0)}(\bar{D})}\right) f(x) - \left(\frac{F^{(0)}(\bar{D})\bar{C}(x)}{\bar{F}^{(1)}(\bar{D}, \bar{A})b_1 + \bar{F}^{(2)}(\bar{D}, \bar{A})b_2}\right) b_1,
\]
(3.8)
where b_1 is given in Eq. (3.7). Enforcing the boundary condition $f(0) = 0$, which is equivalent to assuming that $C(0, t)$ is fixed at $\bar{C}(0)$, gives the solution
\[
f(x) = -\left(\frac{F^{(0)}(\bar{D})}{\bar{F}^{(0)}(\bar{D})}\right) b_1 \exp\left(-\int_0^x \left(\frac{\bar{F}^{(1)}(\bar{C}(y)) - \lambda}{\bar{F}^{(0)}(\bar{D})}\right) dy\right) \\
\times \int_0^x \bar{C}(z) \exp\left(-\int_0^z \left(\frac{\bar{F}^{(1)}(\bar{C}(y)) - \lambda}{\bar{F}^{(0)}(\bar{D})}\right) dy\right) dz.
\]
(3.9)
Evaluating at $x = L$, rearranging, and canceling the $f(L)$ that appears in b_1 gives the following characteristic equation:
\[
1 = K \int_0^L \bar{C}(z) e^{(L-L_2)F^{(0)}(\bar{D})} e^{z} \exp\left(-\int_0^L \left(\frac{F^{(1)}(\bar{C}(y))}{\bar{F}^{(0)}(\bar{D})}\right) dy\right) dz
\]
(3.10)
where
\[
K = e^{-\lambda t} \left(\frac{F^{(0)}(\bar{D})}{\bar{F}^{(1)}(\bar{D})}\right) \left(\frac{F^{(2)}(\bar{D})}{\bar{F}^{(1)}(\bar{D})}\right) \left(\frac{\bar{F}^{(2)}(\bar{D})}{\bar{F}^{(1)}(\bar{D})}\right)
\]
(3.11)
and each $F^{(0)}$ is evaluated at the appropriate steady state.

3.2.2. Model-specific characteristic equation
Using the general form of the characteristic equation from Eqs. (3.10) and (3.11), the particular form of the characteristic equation can be defined for the model equations given by Eqs. (2.1)–(2.3). First substituting these model equations into Eqs. (3.1)–(3.3) gives the following $F^{(0)}$:
\[
F^{(0)}(D(t)) = -\frac{\alpha \beta D(t)^4 \Delta P}{1287^\tau \mu_L},
\]
(3.12)
\[
F^{(1)}(C(x, t)) = -\frac{2}{r} \left(\frac{V_{\max} C(x, t)}{K_M + C(x, t)} + p(C(x, t) - C_e(x))\right).
\]
(3.13)
\[
F^{(2)}(D(t), A(t)) = \frac{1}{t_d} \left(\frac{2}{P_{\text{avg},c}} \left(\frac{P_{\text{eff}}(t)}{2} - (T_{\text{pass}}(D(t)) + A(t)T_{\text{act}}^\tau(D(t)))\right)\right).
\]
(3.14)
and
\[
F^{(3)}(D(t), A(t), C(t), L(t) - \tau) = \frac{1}{t_0} \left(\frac{1}{1 + \exp(-S_{\text{cone}}(C(t), L(t) - \tau), D(t))) - A(t)\right).
\]
(3.15)
Using the particular form of $F^{(1)}$, we can further simplify the characteristic equation (3.10) to eliminate the steady state derivative $\bar{C}(x)$ in the integral. Recalling Eq. (3.1), $\bar{C}(x)$ must satisfy
\[
\bar{C}''(x) = -\frac{1}{F^{(0)}(\bar{D})} F^{(1)}(\bar{C}(x)) = \frac{2}{F^{(0)}(\bar{D})} r (V(\bar{C}(x))
\]
\[
\frac{p(C(x) - C_e(x))).
\]
(3.16)
Differentiating again with respect to x and rearranging, we find
\[
\bar{C}''(x) C'(x) - \frac{2 p C_e(x)}{r} = -\frac{2}{r} \left(V_C(\bar{C}(x)) + p\right)
\]
(3.17)
with the terms arranged so that the right-hand side is $F^{(1)}(\bar{C}(x))$. Substituting into Eq. (3.10) gives
\[
1 = K \int_0^L \bar{C}(z) e^{(L-L_2)F^{(0)}(\bar{D})} e^{z} \exp\left(-\int_0^L \left(\bar{C}(z)\right) + \frac{2p C_e(z)}{r C(z) F^{(0)}(\bar{D})}\right) dy \right) dz
\]
\[
= K \int_0^L \bar{C}(z) e^{(L-L_2)F^{(0)}(\bar{D})} e^{z} \exp\left(-\int_0^L \left(\frac{2p C_e(z)}{r C(z) F^{(0)}(\bar{D})}\right) dy \right) dz.
\]
(3.18)
By analogy with earlier works [11,29], we define the sensitivity γ by
\[
\gamma = \bar{C}(L) K \int_0^L \bar{C}(z) e^{(L-L_2)F^{(0)}(\bar{D})} e^{z} \exp\left(-\int_0^L \left(\frac{2p C_e(z)}{r C(z) F^{(0)}(\bar{D})}\right) dy \right) dz.
\]
(3.19)
Substituting Eq. (3.19) into Eq. (3.18) yields an alternate form for the characteristic equation:

\[I = \frac{\gamma e^{-2\tau}}{(\lambda - F_B^{(1)}(\lambda) + F_A^{(2)}(\lambda))} \int_0^L e^{(-z/\gamma)} dz. \]

(3.20)

In earlier models involving only the TAL, a measure called the sensitivity was defined as a product of the derivative of the chloride concentration profile with respect to position evaluated at the MD, and the derivative of the flow with respect to the chloride concentration evaluated at the reference state [11]. Here, the first term in the numerator of Eq. (3.19) corresponds to the first term in the earlier definition, while the last three terms in the numerator correspond to the second term, i.e., the derivative of the flow. The sensitivity, also referred to as the gain, quantifies the effect of changes in input on output variables.

3.2.3. Evaluation of characteristic equation

To compute two-parameter bifurcation diagrams, solutions of the characteristic equation (3.18) satisfying \(\rho := Re \lambda = 0 \) are determined via gradient descent. All parameters other than the specified bifurcation parameters are fixed at reference values given in Section 2 unless otherwise indicated, with \(\omega := Im \lambda \) and one of the two bifurcation parameters allowed to vary. Contours for particular values of \(\omega \) are found by fixing \(\omega \) at the indicated value while allowing \(\rho \) to vary. The steady state concentration profile \(C(x) \) used in these computations is obtained by direct numerical computation as described in Section 3.1. Derivatives appearing in Eq. (3.18) are computed by a midpoint approximation and integrals are computed using a trapezoidal rule.

4. Model results

From the bifurcation analysis in Section 3.2, a two-parameter bifurcation diagram for sensitivity, \(\gamma \), and time delay, \(\tau \), is created by solving the characteristic equation (3.18) and setting \(\rho := Re \lambda = 0 \). As shown in Fig. 2, a transition from a stable steady state to limit cycle oscillations is predicted when either \(\tau \) is increased while \(\gamma \) is held constant or when \(\gamma \) is increased for a fixed \(\tau \). Direct numerical experiments are conducted as described in Section 3.1 to simulate the change in system dynamics when \(\tau \) is increased from 1 s (point I) in Fig. 2) to \(\tau = 2s \) (point II in Fig. 2). All other parameters are set to their reference values so that sensitivity remains at its reference state value (\(\gamma = 4.754 \)). As seen explicitly in the bottom two panels of Fig. 2, the numerical simulations confirm the stable steady state and limit cycle oscillations in the parameter regions predicted by the bifurcation analysis.

Additional simulations varying the initial chloride concentration \(C_0 \) to within \(\pm 10\% \) and \(\pm 50\% \) of its original value (results not shown) demonstrate good agreement with the dynamics predicted in Fig. 2. While Fig. 2 strictly applies to a linearization about the reference steady state, the results are an accurate guide to dynamic behavior for initial conditions at an extreme distance from those used in our study.

By virtue of the transcritical characteristic equation (3.18), numerous additional bifurcation curves for which \(\rho = 0 \) exist beyond the initial supercritical Hopf bifurcation indicated in Fig. 2. Fig. 3 shows a subset of these curves, along with their corresponding frequencies \(\omega := Im \lambda \). Curves corresponding to the same frequencies occur in sets that are roughly repeated with increasing \(\tau \). Moreover, the frequencies increase for each set of curves with increasing values of \(\gamma \). Although the frequency varies along each curve, considering the frequency near the minimum of each and taking \(\omega = 0.3 \) as a base frequency, we see that the first set of curves above the Hopf bifurcation corresponds to a frequency of about twice the base, the second set to a frequency close to three times the base, and the third to a frequency around four times the base. These results may be compared with earlier work on a related simplified model [11, see in particular Fig. 4], as well as [9]. Here several of the curves are connected, which is a feature that was not present or noted in earlier works. Note that, in order to capture the mathematically interesting behavior of these curves, the results are shown for larger values of both \(\gamma \) and \(\tau \) than we expect to be physiologically relevant.

The information in Fig. 3 indicates that a parameter region exists in which limit cycle oscillations of twice the fundamental frequency should occur. Point (II) in Fig. 3 lies inside this region, and Fig. 4 shows time series profiles for diameter and the associated power spectra for points (II) and (III). As in Fig. 2, point (II) corresponds to reference state conditions but with \(\tau = 2s \). Point (III) corresponds to reference state conditions except \(\tau = 0.1 \) s and the parameter \(cTGF \) is set to \(6.33 \times 10^5 \) such that \(\gamma = 10.0 \). The power spectra in Fig. 4 demonstrate that point (II) parameter values yield limit cycle oscillations that display a first harmonic dominant frequency, i.e., double that of the underlying fundamental frequency. Multiple frequencies are observed immediately following the perturbation, with oscillations at the fundamental frequency decaying as the first harmonic oscillations grow, so that the corresponding two peaks are of comparable intensity for the first 100 s after perturbation (data not shown). The observed frequencies for both points (II) and (III) agree with the predictions from the bifurcation analysis, as indicated by the values of \(\omega \) in Fig. 3. Moreover, the values predicted by the model align with experiments conducted by Basar and Weiss in isolated rat kidneys [14], in which power density peaks were observed at frequencies between 40–70 mHz and 90–120 mHz. The lower frequencies are also consistent with experiments conducted by Leyssac and colleagues [1,6]. Since the time constants \(t_a \) and \(t_d \) also affect the frequency of oscillations (as shown in more detail in the following), the model supports a wide range of dominant oscillatory frequencies, from less than 30 mHz (e.g., for large \(\tau \)) to over 100 mHz.

In addition to the two-dimensional bifurcation diagram for \(\gamma \) and \(\tau \) (Figs. 2 and 3), the relationships between additional bifurcation parameters can be explored. Fig. 5a shows the bifurcation diagram for the time constant for diameter, \(t_d \), versus \(\tau \), with fixed time constant for activation, \(t_a \), and activation time, \(t_d \), and fixed \(t_d \). Both diagrams indicate that increasing \(\tau \) past a threshold curve results in limit cycle oscillations. In each diagram, the solid blue curve indicates the stability threshold for the reference value of the fixed time constant. There is a qualitative difference between the blue bifurcation curves: the curve for \(t_d \) versus \(\tau \) intersects the \(y \)-axis, whereas the curve for \(t_d \) versus \(\tau \) has upward curvature and does not extend to the \(y \)-axis. However, the shape of each bifurcation curve depends on the non-varying time constant, rather than reflecting a fundamental difference between \(t_d \) and \(t_d \). This is demonstrated by the dashed red curves, which indicate the stability threshold with particular non-reference values of the fixed time constant chosen to illustrate the opposite behavior with respect to intersection with the \(y \)-axis. We observe that \(t_d = 1s \) is a smaller than would be expected under experimental conditions; it is employed here to demonstrate that the qualitative difference in the blue bifurcation curves depends on other parameter values and is not dictated by the model equations. As seen in Figs. 6 and 7, stability may be restored by increasing either \(t_a \) or \(t_d \) substantially; however, the parameter values at which stability is reestablished are outside the physiologically relevant range.

The intersection of the bifurcation curves with the \(y \)-axis observed for certain parameter choices in Fig. 5 indicates that limit cycle oscillations may exist even when \(\tau = 0 \). Exploring this further in the bifurcation diagram for \(t_d \) versus \(t_d \) with fixed \(\tau = 50 s \) (Fig. 6), the limit cycle oscillations are enclosed within a region of parameter space, while a stable steady state exists outside this region. Fig. 6b
Fig. 2. Upper panel: sensitivity, γ, as given by Eq. (3.19) plotted against time delay, τ. The curve indicates the transition from a stable steady state (lower left) to limit cycle oscillations (upper right). Points (I) and (II) indicated in the upper panel lie on either side of the predicted bifurcation from a stable steady state to limit cycle oscillations. Lower two panels: dynamic profiles for afferent arteriolar smooth muscle activation, $A(t)$; afferent arteriolar diameter, $D(t)$; and chloride ion concentration at the MD, $C_{\text{CL}}(t)$, after transient perturbation from steady state. The profiles in the middle panel correspond to point (I) with $\tau = 1\,\text{s}$, while the profiles in the bottom panel correspond to the point (II) with $\tau = 2\,\text{s}$.

As τ is increased from 0 to 3 s, the region corresponding to limit cycle oscillations expands steadily (Fig. 7), but no additional bifurcation curves appear. Both Figs. 6 and 7 include a much larger parameter range than is physiologically relevant in order to capture the full extent of the regions of limit cycle oscillations. Fig. 7b rescales Fig. 7a at finer resolution to highlight the physiologically relevant region where the bifurcation curves are difficult to distinguish on the larger scale.
The physiological ranges for τ_p and τ_d follow from values used in [23]. For $\tau = 2\,\text{s}$, the stable region is disconnected, and for $\tau = 3\,\text{s}$ the stable region is confined to a very small area near the origin.

5. Discussion

We have analyzed the dynamics of a mathematical model of blood flow control in the kidney using parameter values consistent with rat physiology. The model assumes that renal blood flow is controlled by two major autoregulatory mechanisms: the myogenic response, by which increases in blood pressure induce vasoconstriction, and the tubuloglomerular feedback (TGF), through which the glomerular filtration rate is regulated based on changes in the luminal chloride ion concentration at the macula densa. This model is used to identify a variety of dynamic behaviors that can arise for parameters within physiological and pathophysiological parameter regimes. These behaviors, which include limit-cycle oscillations, were identified and characterized by analyzing the characteristic equation that arises from a linearization of the model equations and were further explored by direct numerical simulation of the solutions for the full model equations. We note that nested periodic solutions were not observed. TGF-mediated oscillations have been observed in a number of experimental studies [4–8]. To the best of our knowledge, this is the first study that performs a bifurcation analysis on a renal hemodynamics model that includes both TGF and myogenic responses.

Prior to this work, many mathematical models with varying degrees of complexity have been used to analyze kidney autoregulation considering only the TGF mechanism [9,11,29–35]. Glomerular filtration rate is also regulated by the myogenic response, which, together with TGF, acts upon the smooth muscle cells of the afferent arteriole and induces vasoconstriction or vasodilatation. By sharing a common effector, the two mechanisms are expected to interact. Thus, the bifurcation analysis and numerical simulations presented in this study enable a fuller understanding of the interactions between the myogenenic response and TGF mechanism and the resulting dynamics.

Our results indicate that the time constants associated with the afferent arteriole muscle mechanics (τ_p and τ_d) are important bifurcation parameters in addition to the delay and sensitivity, which were previously studied in models involving only the TGF mechanism. By simultaneously varying the time delay, τ, and the time constants τ_p and τ_d, we indicate how these three parameters interact to shift the border between a stable steady state and limit cycle oscillations. Increasing the response time of the afferent arteriole initially lowers the stability of the autoregulatory system before reestablishing stability at much longer response times (Figs. 6 and 7). In a previous vessel wall mechanics model that includes the effects of the myogenic response, the ratio of τ_p to τ_d was found to determine stability [36]. Here, the values of τ_p and τ_d are found to be important individually, as can be seen by considering any ray from the origin in Figs. 6 and 7. In fact, the time constants τ_p and τ_d interact to produce a closed region in two-dimensional parameter space in which limit cycle oscillations are observed. The results presented here further demonstrate the importance of these parameters in determining oscillatory frequency and indicate that the combined model supports a wide range of dominant frequencies. The oscillatory frequencies predicted by our bifurcation analysis and observed in numerical simulations of model solutions are consistent with those detected experimentally [1,6,14].

A few renal hemodynamics models represent both TGF and myogenic mechanisms. In separate studies, Marsh et al. [37,38] and Sgouralis and Layton [39] formulated comprehensive models of renal autoregulation that represented the dynamic interactions of TGF and myogenic mechanisms. These models included a detailed representation of the afferent arteriole that captured both intracellular calcium dynamics and membrane potential. In contrast, the present study adopts a simpler representation of the arteriolar response to regulatory signals. The simplicity of our arteriolar model enables an analytical bifurcation analysis, which provides a more comprehensive understanding of the correspondence between different parameter regimes and solution behavior.
Fig. 4. Time profiles for diameter (left) with associated power spectra (right). The upper and lower panels correspond to the points labeled (II) and (III), respectively, in Fig. 3. The upper left plot is repeated from Fig. 2 for comparison. Shaded regions indicate experimentally observed frequencies [14].

Fig. 5. Bifurcation curves for time constants (t_d for diameter and t_a for activation) plotted against time delay, τ: (a) varying t_d with fixed values of t_a and (b) varying t_a with fixed values of t_d. Solid blue curves correspond to the reference values of the fixed time constant, and dashed red curves to non-reference values. Each curve indicates the location of the transition from a stable steady state (below and to the left of the curve) to limit cycle oscillations (above and to the right of the curve). Thus the region between the curves in (a) corresponds to a stable steady state when $t_a = 1$ s and to limit cycle oscillations when $t_a = 10$ s. In (b), the region between the curves corresponds to a stable steady state when $t_d = 1$ s and to limit cycle oscillations when $t_d = 2$ s. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Certains simplifying assumptions in the present model may impact the validity of the dynamic behaviors predicted for different parameter regimes. First, the TAL is represented as a rigid tubule with uniform radius and transport parameters. Results from a previous modeling study representing the TAL as a tubule with compliant walls suggest that tubular compliance may significantly reduce the stability of the TGF system [30]. Another study [32] suggests that inhomogeneities in tubular radius or in maximum chloride transport rate, as indicated in experimental measurements [40,41], further increase the tendency of the system to oscillate. Second, the bifurcation parameters may also undergo substantial changes as exemplified by spontaneously hypertensive rats, which appear to exhibit higher TGF gain [42–44], compared to normotensive rats. Together with stronger internephron coupling, in which the TGF signal of one nephron is partially transmitted to a neighboring nephron sharing the same cortical radial artery, tubular spontaneously hypertensive rats exhibit irregular TGF-mediated oscillations that appear to have characteristics consistent with deterministic chaos [6,45]. This observation can be explained, in part, by the bifurcation results of our model, which suggest that at higher TGF gain, the stability of the system is significantly reduced. Third, the present model considers a single afferent arteriole and loop of Henle in isolation. It is, however, important to note that TGF in each nephron does not operate independently of other nephrons. Indeed, the TGF systems of nephrons whose afferent arterioles arise from a common interlobular artery are known to be coupled [46], with the TGF signal propagating rapidly via the afferent arteriolar endothelium. Previous studies of dynamics of nephrons coupled via their TGF system indicate that internephron coupling increases the likelihood of TGF-mediated oscillations. Combining several copies of the present model, which incorporates both TGF and the myogenic response, may shed new light on the importance of internephron coupling on the dynamic behavior of the system. The stability of the resulting system can be investigated via the bifurcation analysis used in the present study, following the approach of [31,47].

Acknowledgments

The authors acknowledge the support of the National Science Foundation and the Institute for Mathematics and its Applications under NSF grant DMS-0931945. The work of E. Makrides was supported in part by NSF grant DMS-1148284. The work of J.C. Arciero was supported in part by NSF grant DMS-1224195. The work of A.T.
Layton was supported in part by NSF grant DMS-1263995 and NIH grant DK089066.

References

[13] C. de Rouffignac, L. Monnens, Functional and morphologic maturation of superfi-
[32] T. Takabatake, Y. Ushigici, K. Ohta, N. Hattori, Enhancement of tubulo-
[34] N. Holstein-Rathlou, Synchronization of proximal intratubular pressure oscil-