On a Class of Projectively Flat Metrics with Constant Flag Curvature

Z. Shen and G. Civi Yildirim

June 1, 2005

Abstract

In this paper, we find equations that characterize locally projectively flat Finsler metrics in the form $F = (\alpha + \beta)^2/\alpha$, where $\alpha = \sqrt{a_{ij}y^iy^j}$ is a Riemannian metric and $\beta = b_iy^i$ is a 1-form. Then we completely determine the local structure of those with constant flag curvature.

1 Introduction

It is an important problem in Finsler geometry to study and characterize projectively flat Finsler metrics (with constant flag curvature) on an open domain in \mathbb{R}^n. This is the Hilbert’s 4th problem in the regular case. For a Finsler metric F on a manifold M, the flag curvature $K = K(\Pi, y)$ is a function of tangent plane $\Pi \subset T_xM$ and a non-zero tangent vector $y \in \Pi$. When $F = \sqrt{g_{ij}(x)y^iy^j}$ is a Riemannian metric, $K = K(\Pi)$ is independent of y, which is called the sectional curvature. Thus the flag curvature is an analogue of the sectional curvature in Riemannian geometry. Projectively flat Finsler metrics are of scalar flag curvature (i.e., K is independent of Π containing y for every non-zero tangent vector y), but the flag curvature is not necessarily constant, contrast to the Riemannian case.

The main purpose of this paper is to study and characterize certain projective flat Finsler metrics (with constant flag curvature).

On every strongly convex domain \mathcal{U} in \mathbb{R}^n, Hilbert constructed a complete reversible projectively flat metric $H = H(x, y)$ with negative constant flag curvature $K = -1$. Then Funk constructed a positively projectively flat metric $\Theta = \Theta(x, y)$ with $K = -1/4$ on \mathcal{U} so that its symmetrization is just the Hilbert metric, $H(x, y) = \frac{1}{2}(\Theta(x, y) + \Theta(x, -y))$. When $\mathcal{U} = B^n$ is the unit ball in \mathbb{R}^n, the Funk metric is given by

$$\Theta = \frac{\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2}}{1 - |x|^2} + \frac{\langle x, y \rangle}{1 - |x|^2},$$

1

*2000 Mathematics Subject Classification. Primary 53B40
where \(y \in T_x B^n \approx \mathbb{R}^n \). Here \(| \cdot | \) and \(\langle \, , \rangle \) denote the standard Euclidean norm and inner product. The Funk metric \(\Theta \) on \(B^n \) is a special Randers metric expressed in the form
\[
\Theta = \bar{\alpha} + \bar{\beta},
\]
where
\[
\bar{\alpha} = \sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2} / (1 - |x|^2), \quad \bar{\beta} = \langle x, y \rangle / (1 - |x|^2).
\]

Later on, L. Berwald ([4]) constructed a projectively flat metric with zero flag curvature on the unit ball \(B^n \), which is given by
\[
B = \left(\sqrt{(1 - |x|^2)|y|^2 + \langle x, y \rangle^2} + \langle x, y \rangle \right)^2 / \sqrt{(1 - |x|^2)^2 |y|^2 + \langle x, y \rangle^2},
\]
where \(y \in T_x B^n \equiv \mathbb{R}^n \). Berwald’s metric can be expressed in the form
\[
B = \left(\lambda \bar{\alpha} + \lambda \bar{\beta} \right)^2 / \lambda \bar{\alpha},
\]
where \(\lambda = 1/(1 - |x|^2) \). The Berwald’s metric \(B \) has been generalized by the first author to an arbitrary convex domain \(U \subset \mathbb{R}^n \) using the Funk metric \(\Theta \) on \(U \). For example, \(\tilde{B} := \Theta \{ 1 + \Theta_{y=x} \} \) is projectively flat with \(K = 0 \) [13].

We can extend the Finsler metrics in (2) or (3) in another way, keeping their expression forms. In [12], the first author shows that a Randers metric on a manifold is locally projectively flat with constant flag curvature if and only if it is locally Minkowskian or up to a scaling and reversing, it is locally isometric to
\[
\Theta_a = \bar{\alpha} + \bar{\beta}_a,
\]
where \(\bar{\alpha} \) is defined above and \(\bar{\beta}_a \) is given by
\[
\bar{\beta}_a := \langle x, y \rangle / (1 - |x|^2) + \langle a, y \rangle / (1 + \langle a, x \rangle),
\]
where \(a \in \mathbb{R}^n \) is a constant vector with \(|a| < 1 \). The metric \(\Theta_a \) is projectively flat with \(K = -1/4 \).

In [11], we constructed the following metric \(F_a \) on \(B^n \subset \mathbb{R}^n \) for any constant vector \(a \in \mathbb{R}^n \) with \(|a| < 1 \):
\[
F_a := \left(\lambda_a \bar{\alpha} + \lambda_a \bar{\beta}_a \right)^2 / \lambda_a \bar{\alpha},
\]
where
\[
\lambda_a := \left(1 + \langle a, x \rangle \right)^2 / (1 - |x|^2).
\]

We have proved that the metric \(F_a \) in (4) is projectively flat with \(K = 0 \). See [11] for a detailed proof. When \(a = 0 \), the metric in (4) is reduced to (3).
Recently, R. Bryant studied and characterized locally projectively flat Finsler metrics with constant flag curvature $K = 1$ \cite{[5]-[7]}. It is clear that Bryant’s metrics cannot be expressed in terms of a Riemannian metric and a 1-form as Randers metrics and Berwald’s metrics. See \cite{[13]} for other examples.

The above discussion leads us to study the following function F on the tangent bundle TM of a manifold M,

$$F = \frac{(\alpha + \beta)^2}{\alpha}, \quad (5)$$

where $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M. It is known that F is a Finsler metric if and only if $b = \parallel \beta_x \parallel_\alpha < 1$ at any point $x \in M$. A natural question arises: is there any other projectively flat metric in the form (5) with constant flag curvature?

In this paper, we shall first prove the following

Theorem 1.1 Let $F = (\alpha + \beta)^2/\alpha$ be a Finsler metric on a manifold M. F is projectively flat if and only if

(i) $b_{i|j} = \tau \{(1 + 2\beta^2)a_{ij} - 3b_ib_j\}$,

(ii) the spray coefficients G^i_α of α are in the form: $G^i_\alpha = \theta y^i - \tau \alpha^2 b^i$,

where $b = \parallel \beta_x \parallel_\alpha$, $b_{i|j}$ denote the covariant derivatives of β with respect to α, $\tau = \tau(x)$ is a scalar function and $\theta = a_i(x)y^i$ is a 1-form on M.

In \cite{[11]}, we have already noticed that if α and β satisfy the conditions (i) and (ii), then $F = (\alpha + \beta)^2/\alpha$ is locally projectively flat. Theorem 1.1 asserts that the converse is true too. Theorem 1.1 is a special case of Theorem 3.1 below. There are plenty of non-trivial Finsler metrics satisfying the conditions (i) and (ii) in Theorem 1.1. See \cite{[11]}.

By Theorem 1.1, we can completely determine the local structure of a projective flat Finsler metric F in the form (5) which is of constant flag curvature.

Theorem 1.2 Let $F = (\alpha + \beta)^2/\alpha$ be a Finsler metric on a manifold M. Then F is locally projectively flat with constant flag curvature if and only if one of the following conditions holds

(a) α is flat and β is parallel with respect to α. In this case, F is locally Minkowskian;

(b) Up to a scaling on x and a scaling on F, F is locally isometric to F_a in (4).

In either case (a) or (b), the flag curvature of F must be zero, $K = 0$.

Below is an outline of the proof of Theorem 1.2. By imposing the curvature condition that the flag curvature be constant, we first show that the flag curvature must be zero, $K = 0$. If $\tau = 0$, then F is locally Minkowskian. In the case when $\tau \neq 0$, we show that

$$d\tau + 2\tau^2 \beta = 0, \quad \theta_x y^k - \theta^2 = 3\tau^2 (\alpha^2 - 2\beta^2). \quad (6)$$
Then we show that $\tau \beta$ is closed. Thus there is a local scalar function $\rho = \rho(x)$ such that $\tau \beta = \frac{1}{2} d\rho$ and $\tau = c e^{-\rho}$ for some constant c. Immediately, we can see that $\bar{\alpha} := e^{-\rho} \alpha$ is projectively flat, hence $\bar{\alpha}$ is of constant curvature $\bar{K} = \mu$ by the Beltrami theorem. The constant μ must be nonpositive. By choosing the projective form of $\bar{\alpha}$, we can solve (6) for ρ. Then we determine α and β. The detailed argument is given in the proof of Theorem 5.1 below.

2 \hspace{1cm} (\alpha, \beta)\text{-metrics}

The Finsler metric in (5) is a special (α, β)-metric. By definition, an (α, β)-metric is expressed in the following form,

$$F = \alpha \phi(s), \hspace{0.5cm} s = \frac{\beta}{\alpha},$$

where $\alpha = \sqrt{a_{ij}(x) y^i y^j}$ is a Riemannian metric and $\beta = b_{i}(x) y^i$ is a 1-form. $\phi = \phi(s)$ is a C^∞ positive function on an open interval $(-b_o, b_o)$ satisfying

$$\phi(s) - s \phi'(s) + (b^2 - s^2) \phi''(s) > 0, \hspace{0.5cm} |s| \leq b < b_o.$$

It is known that F is a Finsler metric if and only if $\|\beta \|_{\alpha} < b_o$ for any $x \in M$ [3]. Let G^i and G^i_α denote the spray coefficients of F and α, respectively, given by

$$G^i = g^{id} \left\{ [F^2]_x y^i y^k - [F^2]_x y^i \right\}, \hspace{0.5cm} G^i_\alpha = a^{id} \left\{ [\alpha^2] x y^i y^k - [\alpha^2] x \right\},$$

where $(g^{ij}) := \left(\frac{1}{2} [F^2]_{y^i y^j} \right)$ and $(a^{ij}) := (a_{ij})^{-1}$. We have the following

Lemma 2.1 The geodesic coefficients G^i are related to G^i_α by

$$G^i = G^i_\alpha + \alpha Q s^i + J \left\{ -2Q \alpha s_0 + r_{00} \right\} \frac{y^i}{\alpha}$$

$$+ H \left\{ -2Q \alpha s_0 + r_{00} \right\} \left\{ b^i - s \frac{y^i}{\alpha} \right\}, \hspace{0.5cm} (7)$$

where

$$Q : = \frac{\phi'}{\phi - s \phi'},$$

$$J : = \frac{\phi' \left(\phi - s \phi' \right)}{2 \phi \left(\phi - s \phi' \right) + (b^2 - s^2) \phi''},$$

$$H : = \frac{\phi''}{2 \left(\phi - s \phi' \right) + (b^2 - s^2) \phi''}.$$
where \(s := \beta/\alpha \) and \(b := \|\beta\|_\alpha \). The formula (7) is given in [3] and [14]. A different version of (7) is given in [9] and [10].

It is well-known that a Finsler metric \(F = F(x, y) \) on an open subset \(U \subset \mathbb{R}^n \) is projectively flat if and only if

\[
F_{x^i} y^k - F_{x^j} = 0. \tag{8}
\]

This is due to G. Hamel [8]. By (8), we prove the following

Lemma 2.2 An \((\alpha, \beta)\)-metric \(F = \alpha \phi(s) \), where \(s = \beta/\alpha \), is projectively flat on an open subset \(U \subset \mathbb{R}^n \) if and only if

\[
(a_m \alpha^2 - y_m y_l) G^m_{\alpha} + \alpha^3 Q s_{l0} + H \alpha (-2 \alpha Q s_0 + r_{00})(b_l \alpha - s y_l) = 0. \tag{9}
\]

Proof: Applying (8) to the \((\alpha, \beta)\)-metric \(F = \alpha \phi(s) \) we obtain

\[
\left[\alpha_{x^i} y^k - \alpha_{x^j} \right] \phi + \alpha \phi' \left[s_{x^i} y^k - s_{x^j} \right] + \phi'' \left((s_{x^i} y^k) s_{y^j} + (s_{x^i} y^k) \alpha_{y^j} \right) + \alpha \phi' (s_{x^i} y^k) s_{y^j} = 0. \tag{10}
\]

We have

\[
\alpha_{x^i} = \frac{1}{\alpha} \frac{\partial G^m_{\alpha}}{\partial y^i} y_m,
\]

\[
\alpha_{x^i} y^k = \frac{2}{\alpha} G^m_{\alpha} y_m,
\]

\[
\alpha_{x^i} y^k - \alpha_{x^j} = \frac{2}{\alpha^3} \left(a_m \alpha^2 - y_m y_l \right) G^m_{\alpha},
\]

\[
s_{x^i} = \frac{1}{\alpha} b_m y^m + \frac{1}{\alpha^2} \left(b_m \alpha - s y_m \right) \frac{\partial G^m_{\alpha}}{\partial y^i},
\]

\[
s_{x^i} y^k - s_{x^i} = - \frac{r_{00}}{\alpha} y_l + \frac{2}{\alpha} s_{l0} - \frac{4 y_l}{\alpha^3} \left(b_m \alpha - s y_m \right) G^m_{\alpha} + \frac{2}{\alpha^2} \left(\frac{y_m}{\alpha} b_m - \frac{b_l \alpha - s y_l}{\alpha^2} y_m - s \delta_{ml} \right) G^m_{\alpha},
\]

\[
s_{y^j} = \frac{b_l \alpha - s y_l}{\alpha^2},
\]

where \(y_m := a_{im} y^i \). Plugging them into (10) yields

\[
2(\phi - s \phi') \left(a_m \alpha^2 - y_m y_l \right) G^m_{\alpha} + 2 \phi' \alpha^3 s_{l0} + \phi'' \left(r_{00} \alpha + 2 \left(b_m \alpha - s y_m \right) G^m_{\alpha} \right) (b_l \alpha - s y_l) = 0. \tag{11}
\]

Contracting (11) with \(b^l \) yields

\[
2(b_m \alpha - s y_m) G^m_{\alpha} = -\frac{2 \phi' \alpha^2 s_0 + (b^2 - s^2) \phi'' \alpha r_{00}}{\phi - s \phi' + (b^2 - s^2) \phi''}.
\]

Substituting it back into (11), we get (9). Q.E.D.
3 $F = \alpha + \varepsilon\beta + k\beta^2/\alpha$

In this section, we consider an (α, β)-metric in the following form:

$$F = \alpha + \varepsilon\beta + k\beta^2/\alpha,$$ \hspace{1cm} (12)

where ε, k are constants with $k \neq 0$, $\alpha = \sqrt{a_{ij}y^i y^j}$ is a Riemannian metric and $\beta = b_i y^i$ is a 1-form on M. Let $b_o = b_o(\varepsilon, k) > 0$ be the largest number such that

$$1 + \varepsilon s + ks^2 > 0, \quad 1 + 2kb^2 - 3ks^2 > 0, \quad |s| \leq b < b_o,$$ \hspace{1cm} (13)

so that F is a Finsler metric if and only if β satisfies that $b := \|\beta_x\|_\alpha < b_o$ for any $x \in M$.

From now on, we always assume that ε and $k \neq 0$ satisfy (13). By Lemma 2.1, the spray coefficients G^i of F are given by (7) with

$$Q = \frac{\varepsilon + 2ks}{1 - ks^2},$$

$$J = \frac{(\varepsilon + 2ks)(1 - ks^2)}{2(1 + \varepsilon s + ks^2)(1 + 2kb^2 - 3ks^2)},$$

$$H = \frac{k}{1 + 2kb^2 - 3ks^2}.$$

Equation (9) is reduced to the following equation:

$$\left(a_{mi} \alpha^2 - y_m y_i \right) G^m_i + \frac{\varepsilon + 2ks}{1 - ks^2} \alpha s_{i0}$$

$$+ \frac{k}{1 + 2kb^2 - 3ks^2} \alpha \left\{ - \frac{2(\varepsilon + 2ks)}{1 - ks^2} \alpha s_0 + r_{00} \right\} (b_i \alpha - s y_i) = 0.$$ \hspace{1cm} (14)

By the above identity, we can prove the following

Theorem 3.1 Let $k \neq 0$. $F = \alpha + \varepsilon\beta + k\beta^2/\alpha$ is projectively flat if and only if

(i) $b_{i|j} = \tau((k^{-1} + 2b^2)a_{ij} - 3b_i b_j)$,

(ii) $G^i_\alpha = \theta y^i - \tau \alpha^2 b^i$,

where $\tau = \tau(x)$ and $\theta = a_i(x) y^i$. In this case,

$$G^i = \left\{ \theta + \tau \chi \alpha \right\} y^i,$$ \hspace{1cm} (15)

where

$$\chi := \frac{(\varepsilon + 2ks)(1 - ks^2)}{2k(1 + \varepsilon s + ks^2)} - s, \quad s = \frac{\beta}{\alpha}.$$ \hspace{1cm} (16)
Proof: First, we rewrite (14) as a polynomial in y^i and α, which is linear in α. This gives

$$[(1 + 2kb^2)\alpha^2 - 3k\beta^2][\alpha^2 - k\beta^2](a_m\alpha^2 - y_my_i)G^m_\alpha + \alpha^4[(1 + 2kb^2)\alpha^2 - 3k\beta^2][\varepsilon\alpha + 2k\beta]s_{i0} + k\alpha^2[-2\alpha^2(\varepsilon\alpha + 2k\beta)s_0 + (\alpha^2 - k\beta^2)\tau_00](b_i\alpha^2 - \beta y_i) = 0.$$

(17)

The coefficients of α must be zero (note: α^{even} is a polynomial in y^i). We obtain

$$\varepsilon\left[(1 + 2kb^2)\alpha^2 - 3k\beta^2\right]s_{i0} = \varepsilon\left[2ks_0(b_i\alpha^2 - \beta y_i)\right].$$

Suppose that $\varepsilon \neq 0$. Then

$$\left[(1 + 2kb^2)\alpha^2 - 3k\beta^2\right]s_{i0} = 2ks_0(b_i\alpha^2 - \beta y_i).$$

(18)

Contracting (18) with b^i yields

$$(\alpha^2 - k\beta^2)s_0 = 0.$$

(19)

By assumption, for any $y \neq 0$,

$$\alpha^2 - k\beta^2 \neq 0.$$

Thus

$$s_0 = 0.$$

(20)

Thus β is closed.

Now equation (17) is reduced to the following

$$[(1 + 2kb^2)\alpha^2 - 3k\beta^2](a_m\alpha^2 - y_my_i)G^m_\alpha + k\alpha^2\tau_00(b_i\alpha^2 - \beta y_i) = 0.$$

(21)

Contracting (21) with b^i, we get

$$[(1 + 2kb^2)\alpha^2 - 3k\beta^2](b_m\alpha^2 - y_m\beta)G^m_\alpha = -k\alpha^2(b^2\alpha^2 - \beta^2)\tau_00.$$

Note that the polynomial $(1 + 2kb^2)\alpha^2 - 3k\beta^2$ is not divisible by α^2 and $b^2\alpha^2 - \beta^2$. Thus $(b_m\alpha^2 - y_m\beta)G^m_\alpha$ is divisible by $\alpha^2(b^2\alpha^2 - \beta^2)$. Therefore, there is a scalar function $\tau = \tau(x)$ such that

$$\tau_00 = \frac{\tau}{k}[(1 + 2kb^2)\alpha^2 - 3k\beta^2].$$

(22)

By (20) and (22), the formula (7) for G^i can be simplified to

$$G^i = G^i_\alpha + \tau\alpha y^i + \tau\alpha^2 b^i.$$

(23)
where χ is given in (16). We know that F is projectively flat if and only if

$$G^i = Py^i.$$

By (23), this is equivalent to the following

$$G^i_\alpha = \theta y^i - \tau \alpha^2 b^i,$$

where $\theta = a_{i}y^i$ is a 1-form. In this case, G^i_α are given by (15). This proves Theorem 3.1 in the case when $\varepsilon \neq 0$.

Now let us study the case when $\varepsilon = 0$. In this case,

$$F = \alpha + \frac{\beta^2}{\alpha}$$

First it is easy to verify that under the conditions (i) and (ii) in Theorem 3.1, F in (25) is projectively flat. Conversely, assume that F is locally projectively flat. Then it must be a Douglas metric. By Matsumoto’s result on Douglas metrics [10], one can see that α and β must satisfy the condition (i). Since F is locally projectively flat, by a simple argument as above, one can see that the condition (ii) is satisfied. Q.E.D.

We should point out that the Riemannian metric α in Theorem 3.1 is not locally projectively flat in general.

4 Flag curvature

In this section, we shall study the following metric with constant flag curvature $K = \lambda$,

$$F = \alpha + \varepsilon \beta + k\frac{\beta^2}{\alpha},$$

where ε and k are constants with $k \neq 0$. We assume that F is locally projectively flat so that in a local coordinate system the spray coefficients of F are in the form (15). It is known that if the spray coefficients of F are in the form $G^i = Py^i$, then F is of scalar curvature with flag curvature $K = \frac{P^2 - P_x y^k}{F^2}$.

Then

$$K = \frac{[\theta + \tau \chi \alpha]^2 - [\theta + \tau \chi \alpha]_x y^k}{F^2}$$

$$= \frac{(\theta + \tau \chi \alpha)^2 - \theta x^k y^k - \tau \chi x^k y^k \chi \alpha - \tau \chi (s) s x^k y^k \alpha - \tau \chi a x^k y^k}{F^2}.$$

(26)
Observe that
\[s_{x^k} y^k = \frac{\tau_0}{\alpha} + \frac{2}{\alpha^2} \left\{ b_m \alpha - s y_m \right\} G_{\alpha}^m \]
\[= \frac{\tau}{k} \left\{ (1 + 2k b^2) - 3ks^2 \right\} \alpha \]
\[+ \frac{2}{\alpha^2} \left\{ b_m \alpha - s y_m \right\} \left\{ \theta y^m - \tau \alpha^2 b^m \right\} \]
\[= \tau \left\{ (1/k + 2b^2) - 3s^2 \right\} \alpha - 2\tau (b^2 - s^2) \alpha \]
\[= \tau (1/k - s^2) \alpha. \]

We obtain
\[\alpha_{x^k} y^k = \frac{2}{\alpha} G_{\alpha}^m y_m \]
\[= \frac{2}{\alpha} \left\{ \theta y^m - \tau \alpha^2 b^m \right\} y_m \]
\[= 2(\theta - \tau \beta) \alpha. \]

We obtain
\[K = \frac{\theta^2 - \theta_{x^k} y^k + \tau^2 \chi^2 \alpha^2 - \chi \tau_0 \alpha - \tau^2 (1/k - s^2) \chi' \alpha^2 + 2s \tau^2 \chi \alpha^2}{F^2}. \tag{27} \]

Lemma 4.1 Suppose that \(F = \alpha + \varepsilon \beta + k \beta^2 / \alpha \) with \(k \neq 0 \) is projectively flat with constant flag curvature \(K = \lambda \) = constant, then \(\lambda = 0 \).

Proof: First by (27), the equation \(K = \lambda \) multiplied by \(k^2 \alpha^4 F^4 \) yields:
\[A \alpha^3 + B \alpha^2 - 4 \varepsilon \lambda k^5 \beta^7 \alpha - \lambda k^6 \beta^8 = 0, \]
where \(A \) and \(B \) are homogeneous polynomials in \(y \) of degrees 5 and 6 respectively. Rewriting the above equation as
\[\left\{ A \alpha^2 - 4 \varepsilon \lambda k^5 \beta^7 \right\} \alpha + \left\{ B \alpha^2 - \lambda k^6 \beta^8 \right\} = 0. \]
We must have
\[A \alpha^2 - 4 \varepsilon \lambda k^5 \beta^7 = 0, \quad B \alpha^2 - \lambda k^6 \beta^8 = 0. \tag{28} \]
Since \(\beta^2 \) is not divisible by \(\alpha \), we conclude from the second identity in (28) that \(\lambda = 0 \). Q.E.D.

Now we consider the trivial case when \(\tau = 0 \). In this case,
\[b_{i;j} = 0, \quad G^i = G^i_\alpha = \theta y^i. \]
By Lemma 4.1, \(F \) has zero flag curvature, thus \(\alpha \) has zero sectional curvature. Thus \(\alpha \) is locally isometric to the Euclidean metric. We have proved the following
Proposition 4.2 Let $F = \alpha + \varepsilon \beta + k\beta^2/\alpha$ where $k \neq 0$. Suppose that F is a locally projectively flat metric with zero flag curvature. If $\tau = 0$, then α is flat metric and β is parallel. In this case, F is locally Minkowskian.

The case when $\tau \neq 0$ is more complicated. First we have the following

Proposition 4.3 Suppose that $F = \alpha + \varepsilon \beta + k\beta^2/\alpha$ with $k \neq 0$ is projectively flat with zero flag curvature and $\tau \neq 0$, then

(a) $\varepsilon^2 = 4k$,
(b) $\tau_{x^i} + 2\tau b_i = 0$,
(c) $\theta_{x^i}y^i - \theta^2 = 3\tau^2(k^{-1}\alpha^2 - 2\beta^2)$.

Proof: Under the assumption that $K = 0$, we obtain

$$\Phi \alpha + \Psi = 0,$$

where

$$\Phi := -\left\{2k\varepsilon P\alpha^2 - 4k^2\varepsilon\beta^2 P + 8k^2\varepsilon\beta Q\right\}\alpha^2 + 14k^3\varepsilon\beta^4 P - 8k^3\varepsilon\beta^4 Q$$

$$\Psi := 3\tau^2(\varepsilon^2 - 4k)\alpha^6 - \left\{4Qk^2 + 2k^2\beta P + 6k\tau^2(\varepsilon^2 - 4k)\beta^2\right\}\alpha^4$$

$$+ \left\{3\tau^2 k^2(\varepsilon^2 - 4k)\beta^4 + 2k^2(3\varepsilon^2 + 4k)P\beta^3 - 4k^2(\varepsilon^2 + 2k)Q\beta^2\right\}\alpha^2$$

$$+ 8k^4\beta^5 P - 4k^4\beta^4 Q,$$

where $P := \tau_{x^i}y^k + 2\tau^2 \beta$ and $Q = \theta_{x^i}y^k - \theta^2 - 3\tau^2(k^{-1}\alpha^2 - 2\beta^2)$. Note that Φ and Ψ are homogeneous polynomials in y and $\alpha = \sqrt{a_{ij}y^i y^j}$ is in a radical form. Equation (29) implies that

$$\Phi = 0, \quad \Psi = 0.$$

First we consider the equation $\Phi = 0$. It can be written as

$$\left\{2k\varepsilon P\alpha^2 - 4k^2\varepsilon\beta^2 P + 8k^2\varepsilon\beta Q\right\}\alpha^2 = \left\{14k^3\varepsilon\beta^4 P - 8k^3\varepsilon\beta^4 Q\right\}\beta^3.$$

Since α^2 does not contain the factor β, there is a scalar function $c_1 = c_1(x)$ such that

$$14\varepsilon\beta P - 8\varepsilon Q = c_1\alpha^2.$$

Then (30) becomes

$$2\varepsilon P\alpha^2 = k\left\{4\varepsilon\beta P - 8\varepsilon Q + c_1 k\beta^2\right\}\beta.$$

Since α^2 is not divisible by β, there is a scalar function $c_2 = c_2(x)$ such that

$$4\varepsilon\beta P - 8\varepsilon Q + c_1 k\beta^2 = c_2\alpha^2.$$
Then (32) is reduced to
\[2\epsilon P = c_2k\beta. \] (34)
It follows from (31) and (33) that
\[10\epsilon\beta P - c_1k\beta^2 = (c_1 - c_2)\alpha^2. \] (35)
Plugging (34) into (35) yields
\[k(5c_2 - c_1)\beta^2 = (c_1 - c_2)\alpha^2. \]
Thus \(c_1 = c_2 = 0, \) and
\[\epsilon P = 0, \quad \epsilon Q = 0. \] (36)
First we assume that \(\epsilon \neq 0. \) Then (36) implies that
\[P = Q = 0. \]
The formula for \(\Psi \) is reduced to
\[\Psi = 3(\epsilon^2 - 4k)\alpha^2\beta^2. \]
Under the assumption that \(\tau \neq 0, \) the equation \(\Psi = 0 \) implies that
\[\epsilon^2 = 4k. \]
Now we assume that \(\epsilon = 0. \) We are going to show that this is impossible.
The formula for \(\Psi \) is reduced to
\[\Psi = -4k\left\{3\tau^2\alpha^4 + k\left(Q - 6\tau^2\beta^2\right)\alpha^2 + k^2\left(3\tau^2\beta^2 - 2P\beta + 2Q\right)\beta^2\right\}\alpha^2 + 4k^4(2\beta P - Q)\beta^4. \]
\(\Psi = 0 \) implies that there is a scalar function \(\delta_1 = \delta_1(x) \) such that
\[2\beta P - Q = \delta_1\alpha^2, \] (37)
\[\left\{3\tau^2\alpha^2 + k\left(Q - 6\tau^2\beta^2\right)\right\}\alpha^2 + k^2\left\{\left(3\tau^2\beta^2 - 2P\beta + 2Q\right) - k\delta_1\beta^2\right\}\beta^2 = 0. \] (38)
It follows from (38) that there is a scalar function \(\delta_2 = \delta_2(x) \) such that
\[3\tau^2\beta^2 - 2P\beta + 2Q = k\delta_2\beta^2 - \delta_2\alpha^2, \] (39)
\[3\tau^2\alpha^2 + k\left(Q - 6\tau^2\beta^2\right) = k^2\delta_2\beta^2. \] (40)
It follows from (37) and (39) that
\[Q = (\delta_1 - \delta_2)\alpha^2 + (k\delta_1 - 3\tau^2)\beta^2. \]
Substituting it into (40) yields that
\[\left\{3\tau^2 + k(\delta_1 - \delta_2)\right\}\alpha^2 = k\left\{9\tau^2 - k(\delta_1 - \delta_2)\right\}\beta^2. \]
We conclude that
\[3\tau^2 + k(\delta_1 - \delta_2) = 0, \quad 9\tau^2 - k(\delta_1 - \delta_2) = 0. \]
This is impossible since \(\tau \neq 0. \) Therefore, \(\epsilon \neq 0. \) Q.E.D.
5 Solving the equations

In this section, we assume that \(F = \alpha + \varepsilon \beta + k\beta^2/\alpha \) is projectively flat with zero flag curvature \(K = 0 \) and \(\tau \neq 0 \). By Proposition 4.3, \(\varepsilon^2 = 4k > 0 \). Then
\[
F = \frac{(\alpha \pm \sqrt{k}\beta)^2}{\alpha}.
\]

We shall prove the following

Theorem 5.1 Let \(k > 0 \). Let \(F = (\alpha \pm \sqrt{k}\beta)^2/\alpha \) be locally projectively flat with \(\tau \neq 0 \). Suppose that \(F \) has constant flag curvature. Then the flag curvature \(K = 0 \) and one of the following holds:

(a) \(F \) is locally Minkowskian.

(b) At every point there is a local coordinate system \((x^i)\) in which, \(\alpha \) and \(\beta \) are given by
\[
\begin{align*}
\alpha &= \frac{(\delta + \langle a, x \rangle)^2}{1 - c^2|x|^2} \frac{\sqrt{(1 - c^2|x|^2)|y|^2 + c^2\langle x, y \rangle^2}}{1 - c^2|x|^2}, \\
\beta &= \frac{1}{c\sqrt{k}} \frac{(\delta + \langle a, x \rangle)^2}{1 - c^2|x|^2} \left\{ \frac{\langle a, y \rangle}{\delta + \langle a, x \rangle} + \frac{c^2\langle x, y \rangle}{1 - c^2|x|^2} \right\},
\end{align*}
\]
where \(\delta \) and \(c \) are non-zero constants and \(a \in \mathbb{R}^n \) is a constant vector.

Proof: Without lost generality, we may assume that \(k = 1 \), thus \(\varepsilon = \pm 2 \) and
\[
F = \frac{(\alpha \pm \beta)^2}{\alpha}.
\]

By Theorem 3.1 and Proposition 4.3,
\[
\begin{align*}
b_{ij} &= \tau \left\{ (1 + 2\beta^2)a_{ij} - 3b_ib_j \right\}, \\
G^i_\alpha &= \theta y^i - \tau \alpha^2 b^i, \\
\tau x_i + 2\tau^2 b_i &= 0, \\
\theta x_i y^i - \theta^2 &= 3\tau^2 (\alpha^2 - 2\beta^2).
\end{align*}
\]

We are going to solve (43)-(46) for \(\alpha \) and \(\beta \).

It follows from (43) and (45) that
\[
(\tau b_i)_{ij} - (\tau b_j)_{ij} = \tau (b_{i|j} - b_{j|i}) + \tau x_i b_i - \tau x_j b_j = 0.
\]

Thus \(\tau \beta \) is closed. Locally, there is a scalar function \(\rho = \rho(x) \) such that
\[
\tau b_i = \frac{1}{2} \rho x^i.
\]
Substituting it into (45) yields
\[\tau x^i + \tau \rho x^i = 0. \]
We obtain
\[\tau = ce^{-\rho}, \] (48)
where \(c = \text{constant}. \)

Let \(\bar{\alpha} = e^{-\rho} \alpha. \) Then
\[G^i_{\bar{\alpha}} = G^i_\alpha - \rho_0 y^i + \frac{1}{2} \rho^i \alpha^2. \]
where \(\rho^i := \rho x^i a^i. \)

By (44) and (47), we get
\[G^i_{\bar{\alpha}} = (\theta - \rho_0) y^i. \] (49)
Thus \(\bar{\alpha} \) is projectively flat. By the Beltrami theorem, \(\bar{\alpha} \) has constant sectional curvature
\[K_{\bar{\alpha}} = \mu. \]
We may assume that
\[\bar{\alpha} = \sqrt{(1 + \mu |x|^2) y^2 - \mu (x, y)^2}. \]
We have
\[G^i_{\bar{\alpha}} = -\frac{\mu (x, y)}{1 + \mu |x|^2} y^i. \]
Substituting it into (49), we obtain
\[\theta = [\rho - \ln \sqrt{1 + \mu |x|^2}]_0. \] (50)
Then (46) is reduced to
\[\rho_{x^ix^j} = \frac{1}{2} \rho_{x^i} \rho_{x^j} - \mu \frac{x^i \rho_{x^j} + x^j \rho_{x^i}}{1 + \mu |x|^2} + (3c^2 + \mu) \bar{a}_{ij}, \]
where \(\bar{a}_{ij} \) are the coefficients of \(\bar{\alpha}. \) Let
\[\varphi := e^{\rho/2}. \]
Then
\[\varphi_{x^ix^j} + \mu \frac{x^i \varphi_{x^j} + x^j \varphi_{x^i}}{1 + \mu |x|^2} = \frac{3c^2 + \mu}{2} \bar{a}_{ij} \varphi. \]
Let
\[\xi := \sqrt{1 + \mu |x|^2} \varphi. \] (51)
Then
\[\xi_{x^ix^j} = \frac{3}{2} (c^2 + \mu) \sqrt{1 + \mu |x|^2} \bar{a}_{ij} \varphi. \] (52)
Let
\[h := \frac{|x|^2}{\sqrt{1 + \mu|x|^2} + 1}. \]

Then
\[\sqrt{1 + \mu|x|^2} \tilde{a}_{ij} = h_{x^i x^j}. \]

It follows from (52) that
\[\xi_{x^i x^j} = \frac{3(c^2 + \mu)}{2} h_{x^i x^j} \varphi. \]

Differentiating it yields
\[\xi_{x^i x^j x^k} = \frac{3(c^2 + \mu)}{2} \left\{ h_{x^i x^j x^k} \varphi + h_{x^i x^j} \varphi_{x^k} \right\}. \]

Under our assumption \(\tau \neq 0 \), we claim that \(c^2 + \mu = 0 \). Suppose that \(c^2 + \mu \neq 0 \). Then by symmetry, we get
\[h_{x^i x^j} \varphi_{x^k} = h_{x^i x^j} \varphi_{x^k}. \]

Thus, by (53)
\[\tilde{a}_{ij} \varphi_{x^k} = \tilde{a}_{ik} \varphi_{x^j}. \]

Contracting it with \(\tilde{a}^{im} \) we get
\[\delta^m_j \varphi_{x^k} = \delta^m_k \varphi_{x^j}. \]

This implies that \(\varphi_{x^k} = 0 \). That is, \(\varphi = e^{\rho/2} = constant \). Then by (48)
\[\tau = ce^{-\rho} = constant \]
and by (47)
\[\tau b_i = \frac{1}{2} \rho_{x^i} = 0. \]

Since \(\beta \neq 0 \), we must have \(\tau = 0 \) and \(c = 0 \). This contradicts our assumption.

Now we have that \(c^2 + \mu = 0 \). Then \(\mu = -c^2 \leq 0 \). If \(c = 0 \), then by (48), \(\tau = 0 \). This is a contradiction. Thus
\[\mu = -c^2 < 0. \]

In this case, (52) is reduced to
\[\xi_{x^i x^j} = 0. \]

We get
\[\xi = \delta + \langle a, x \rangle, \]
where \(\delta \) is a constant and \(a \in \mathbb{R}^n \) is a constant vector. Then by (51) and (48),

\[
\rho = \ln \varphi^2 = \ln \frac{\xi^2}{1 + \mu |x|^2} = \ln \left(\frac{\delta + \langle a, x \rangle)^2}{1 + \mu |x|^2} \right)
\]

\[
\tau = c e^{-\rho} = c \frac{1 + \mu |x|^2}{(\delta + \langle a, x \rangle)^2}.
\]

We obtain

\[
\alpha = e^\rho \bar{a} = \frac{(\delta + \langle a, x \rangle)^2 \sqrt{(1 - c^2|x|^2))y^2 + c^2(x, y)^2}}{1 - c^2|x|^2} \frac{1 - c^2|x|^2}{1 - c^2|x|^2}
\]

\[
\beta = \frac{1}{2\tau \rho_0} = \frac{1}{1 - \frac{(\delta + \langle a, x \rangle)^2}{c} \frac{(1 - c^2|x|^2))y^2 + c^2(x, y)^2}{\delta + \langle a, x \rangle}} \frac{1 - c^2|x|^2}{1 - c^2|x|^2}
\]

6 Some properties of \(F_a \)

In the last section, we are going to say few words about the special metric \(F_a \) in (4). \(F_a \) is given by

\[
F_a := \frac{(\alpha + \beta)^2}{\alpha},
\]

where \(\alpha := \lambda_a \bar{a}, \beta := \lambda_a \bar{b}_a, \lambda_a := (1 + \langle a, x \rangle)^2 / (1 - |x|^2) \). First, it is easy to get

\[
||\beta||_a = 1 - \frac{1 - |a|^2}{\lambda_a}.
\]

Let \(g_{i,j} := \frac{1}{2}[F_a^2]_{y^i y^j} \) and \(a_{i,j} := \frac{1}{2}[a^2]_{y^i y^j} \). We have

\[
\det(g_{i,j}) = \left(\frac{a^2 - \beta^2}{\alpha^3} \right)^n F^{n+1} \left(1 + \frac{1}{2}||\beta||_a (\frac{a^2}{\alpha^3} - 3\beta^2) \right) \det(a_{i,j}).
\]

Thus if \(|a| < 1 \), \(F_a \) is a Finsler metric on the unit ball \(B^o \subset \mathbb{R}^n \).

Let \(b \in \mathbb{R}^n \) be an arbitrary unit vector, i.e., \(|b| = 1 \) and \(m := \langle a, b \rangle \). We have \(|m| \leq |a| < 1 \). Let \(c(t) := bt \). The \(F_a \)-length of \(c'(t) = b \) is given by

\[
F_a(c(t), c'(t)) = \frac{(1 + m)^2}{(1 - t)^2}.
\]

Thus the \(F_a \)-lengths of \(C_- : c(t), -1 < t \leq 0 \) and \(C_+ : c(t), 0 \leq t < 1 \) are given by

\[
\text{Length}(C_-) = \frac{(1 + m)^2}{2}, \quad \text{Length}(C_+) = +\infty.
\]

This shows that \(F_a \) is positively complete, but not complete.

The Cartan torsion is unbounded. But the formula for the bound of the Cartan torsion is very complicated.

At the origin \(x = 0 \) and \(x = -a \),

\[
F_a(0, y) = \frac{|y| + \langle a, y \rangle}{|y|}, \quad F_a(-a, y) = \sqrt{(1 - |a|^2)|y|^2 + \langle a, y \rangle^2}.
\]
Note that F_a is Euclidean at $x = -a$. When a changes, the “Euclidean center”, $-a$, of F_a moves.

We conjecture that F_a is a projective representation of Berwald’s metric F_0 at $x = -a$. However, we could not find a diffeomorphism $\varphi_a : B^n \to B^n$ with the following properties: (i) φ maps lines to lines, (ii) $\varphi(0) = -a$, and (ii) $\varphi^* F_0 = F_a$.

References

Zhongmin Shen
Department of Mathematical Sciences
Indiana University Purdue University Indianapolis (IUPUI)
402 N. Blackford Street
Indianapolis, IN 46202-3216, USA
zshen@math.iupui.edu

Gulcin Civi Yildirim
Istanbul Technical University
Faculty of Science and Letters
Department of Mathematics
Maslak, Istanbul
TURKEY
civi@itu.edu.tr